If tanx+cotx=3 then show that tan^4x+cot^4x=47
Answers
Answered by
62
Given tanx+cotx=3
To Prove =tan^4x+cot^4x=47
Solution :
Tanx+Cotx=3
Squaring on both sides, we get
[Tanx+Cotx]²=3²
Tan²x+Cot²x+2Tanx Cotx=9
Tan²X+Cot²X +2=9 [Since Tanxcotx=1]
Tan²X+Cot²X =7
Squaring on both sides ,
[Tan²X+Cot²X ]²=7²
Tan⁴X+Cot⁴X+2Tan²X.cot²X=49
Tan⁴X+Cot⁴X+2=49
∴Tan⁴X+Cot⁴X=47
Hence proved
To Prove =tan^4x+cot^4x=47
Solution :
Tanx+Cotx=3
Squaring on both sides, we get
[Tanx+Cotx]²=3²
Tan²x+Cot²x+2Tanx Cotx=9
Tan²X+Cot²X +2=9 [Since Tanxcotx=1]
Tan²X+Cot²X =7
Squaring on both sides ,
[Tan²X+Cot²X ]²=7²
Tan⁴X+Cot⁴X+2Tan²X.cot²X=49
Tan⁴X+Cot⁴X+2=49
∴Tan⁴X+Cot⁴X=47
Hence proved
Answered by
4
Answer:
i hpoe u will understand
Attachments:
Similar questions
Math,
8 months ago
Science,
8 months ago
Science,
1 year ago
Biology,
1 year ago
Environmental Sciences,
1 year ago