Math, asked by sskpaugust, 11 months ago

if tanx = ntany and sinx = msiny prove that cos2x = m2-1/n2-1​

Answers

Answered by empathictruro
20

cos^{2} x = \frac{m^{2}-1 }{n^{2}-1}

Step-by-step explanation:

tanx = n tany

therefore,  

n = \frac{tanx}{tany} (Equation 1)

and sinx = m siny

therefore,  

m = \frac{sinx}{siny} (Equation 2)

L.H.S = cos^{2} x </p><p>R.H.S = [tex]\frac{m^{2}-1 }{n^{2}-1}

Taking R.H.S

\frac{m^{2}-1 }{n^{2}-1}[/tex]

Replace the value of m  & n by the Equation 1 & Equation 2 Respectively.

= \frac{(\frac{sinx}{siny}) ^{2}- 1}{(\frac{tanx}{tany})^{2}-1 }

= \frac{\frac{sin^{2}x-sin^{2}y  }{sin^{2}y } }{\frac{tan^{2}x -tan^{2}y  }{tan^{2} y} }

as we know tan^{2} y = \frac{sin^{2}y }{cos^{2} y}

therefore,

=    \frac{\frac{sin^{2}x-sin^{2}y  }{sin^{2}y } }{\frac{tan^{2}x -   tan^{2}y  }{\frac{sin^{2}y}{cos^{2} y}} }

=\frac{sin^{2}x-sin^{2}y }{sin^{2}y }   \frac{sin^{2}y }{cos^{2}y(tan^{2}x-tan^{2}y)}

=\frac{sin^{2}x-sin^{2}y }{cos^{2}y(tan^{2}x-tan^{2}y)}

we know that,

= sin^{2} x=1-cos^{2} x

therefore replace sin^{2} x=1-cos^{2} x

=\frac{1-cos^{2}x-1+cos^{2}y }{cos^{2}y(tan^{2}x-tan^{2}y)}

we know that,

=tan^{2} x=sec^{2} x-1

thus,

=\frac{cos^{2}y-cos^{2}x }{cos^{2}y(sec^{2}x-1-sec^{2}y+1)}

=\frac{cos^{2}y-cos^{2}x }{cos^{2}y(\frac{1}{cos^{2}x } -\frac{1}{cos^{2}y})}

=\frac{cos^{2}y-cos^{2}x }{cos^{2}y(\frac{cos^{2}y -cos^{2}x }{cos^{2}x .cos^{2}y})}

= cos^{2}x =L.H.S

#LearnMore

https://brainly.in/question/13715501

Answered by shirinsobnam
9

Question: if tanx = ntany and sinx = msiny, prove that cos^2x = (m^2-1)/(n^2-1)

Hope it helps you

Attachments:
Similar questions