If tanx + tany + tanz = Pi or Pi /2 then prove that... x+y+z=xyz
afdwl:
Is it tan inverse ?
Answers
Answered by
1
We have to prove that, x + y + z = xyz or, xy + yz + zx = 1 when tan¯1x + tan¯¹y + tan¯¹z = π or, π/2
Proof : we know, tan(A + B + C) = (tanA + tanB + tanC - tanA tanB tanC)/(1 - tanA tanB - tanB tanC - tanC tanA)
so, tan¯¹x + tan¯¹y + tan¯¹z = tan¯¹[(x+ y + z - xyz)/(1 - xy - yz - zx)
If tan¯¹x + tan¯¹y + tan¯¹z = π
then, tan¯¹[(x + y + z - xyz)/(1 - xy - yz - zx)] = π
⇒(x + y + z - xyz)/(1 - xy - yz - zx) = tanπ = 0
⇒x + y + z = xyz [ hence proved]
Again, if tan¯¹x + tan¯¹y + tan¯¹z = π/2
⇒tan¯¹[(x + y + z - xyz)/(1 - xy - yz - zx)] = π/2
⇒(x + y + z - xyz)/(1 - xy - yz - zx) = tanπ/2 = 1/0
⇒1 - xy - yz - zx = 0
⇒xy + yz + zx = 1 [ hence proved ]
Similar questions