Math, asked by AmarvsKing, 1 year ago

if tanx =x-1/4x, then secx - tanx is equal to​

Attachments:

Answers

Answered by brunoconti
17

Answer:

Step-by-step explanation:

option a) is the right one

Attachments:
Answered by pinquancaro
19

Option a - \sec x-\tan x=\frac{1}{2x},-2x

Step-by-step explanation:

Given : If \tan x=x-\frac{1}{4x}

To find : The value of \sec x-\tan x ?

Solution :

We know that,

sec^2 x-tan^2 x = 1

sec^2 x= 1+\tan^2 x

sec^2 x= 1+(x-\frac{1}{4x})^2

sec^2 x= 1+x^2+\frac{1}{16x^2}-\frac{1}{2}

sec^2 x= x^2+\frac{1}{16x^2}+\frac{1}{2}

sec^2 x= (x+\frac{1}{4x})^2

sec x= \pm(x+\frac{1}{4x})

Now substitute the value sec x= x+\frac{1}{4x},

\sec x-\tan x=x+\frac{1}{4x}-(x-\frac{1}{4x})

\sec x-\tan x=x+\frac{1}{4x}-x+\frac{1}{4x}

\sec x-\tan x=\frac{2}{4x}

\sec x-\tan x=\frac{1}{2x}

Now substitute the value \sec x= -x-\frac{1}{4x},

\sec x-\tan x=-x-\frac{1}{4x}-(x-\frac{1}{4x})

\sec x-\tan x=-x-\frac{1}{4x}-x+\frac{1}{4x}

\sec x-\tan x=-2x

Therefore, Option a is correct.

#Learn more

(Secx-tanx-1)(secx+tanx+1)+2 tanx

https://brainly.in/question/10130332

Similar questions