Math, asked by madhav5245, 1 month ago

If
 {(1 + x)}^{n}  = C_0 + C_1x + C_2x +  -  -  + C_n {x}^{n}

prove that

(1.2)C_2 + (2.3)C_3 +  -  -  + (n - 1)nC_n = n(n - 1) {2}^{n - 2}

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that

 \sf \:  {(1 + x)}^{n} =C_0 + C_1x + C_2 {x}^{2} + C_3 {x}^{3} +  -  -  + C_n {x}^{n}

On differentiating both sides w. r. t. x, we get

 \sf \:\dfrac{d}{dx}{(1 + x)}^{n} =\dfrac{d}{dx}[C_0 + C_1x + C_2 {x}^{2} + C_3 {x}^{3} +  -  -  + C_n {x}^{n}]

can be rewritten as

 \sf \:\dfrac{d}{dx}{(1 + x)}^{n} =\dfrac{d}{dx}C_0 +\dfrac{d}{dx} C_1x + \dfrac{d}{dx}C_2 {x}^{2} + \dfrac{d}{dx}C_3 {x}^{3} +  -  -  + \dfrac{d}{dx}C_n {x}^{n}

We know,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n \:  -  \: 1} \: }}}

So, using this, we get

 \sf n {(1 + x)}^{n - 1} = C_1 + 2C_2x + 3C_3 {x}^{2} +  -  -  + nC_n {x}^{n - 1}

On differentiating both sides w. r. t. x, we get

 \sf \dfrac{d}{dx}n {(1 + x)}^{n - 1} = \dfrac{d}{dx}[C_1 + 2C_2x + 3C_3 {x}^{2} +  -  -  + nC_n {x}^{n - 1}]

 \sf n(n - 1) {(1 + x)}^{n - 2} = 2C_2 + (2.3)C_3x +  -  -  + (n - 1)nC_n {x}^{n - 2}

On substituting x = 1, we get

 \sf n(n - 1) {(1 + 1)}^{n - 2} = 2C_2 + (2.3)C_3 +  -  -  + (n - 1)nC_n {1}^{n - 2}

 \sf n(n - 1) {2}^{n - 2} = (1.2)C_2 + (2.3)C_3 +  -  -  + (n - 1)nC_n {1}^{n - 2}

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

 \sf \: If \: {(1 + x)}^{n} =C_0 + C_1x + C_2 {x}^{2} + C_3 {x}^{3} +  -  -  + C_n {x}^{n}

then

\boxed{ \tt{ \: C_0 + C_2 + C_4 +  -  -  -  = C_1 + C_3 + C_5 +  -  -  - }}

\boxed{ \tt{ \: C_0 + C_1 + C_2 + C_3 +  -  - C_n =  {2}^{n}}}

\boxed{ \tt{ \: C_0  -  C_1  +  C_2  -  C_3 +  -  - +  {( - 1)}^{n} C_n =  0}}

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by Diliptalapda
1

this is an answer for this question.

download snapsolve app and get the all solutions.snap your problems and get the all solutions.OKdon't spam.I say for your good.

Attachments:
Similar questions