Math, asked by SharmaShivam, 1 year ago

If 3sin\theta+5cos\theta=5 then show that 5sin\theta-3cos\theta=\pm3

Answers

Answered by LetMeAnswer
1

=>( 3 sin θ + 5cos θ )² + ( 5 sinθ - 3 cos θ )² .

= 9( sin²θ + cos²θ ) + 25( sin²θ + cos²θ ) .

= ( 9 + 25 ) .

= 34 .

∴ ( 3 sin θ + 5 sin θ )² + ( 5 sin θ - 3 cos θ )² = 34 .

⇒ 5² + ( 5 sin θ - 3 cos θ )² = 34 . [ ∵ 3 sin θ + 5 cos θ = 5 ]

⇒ 25 + ( 5 sin θ - 3 cos θ )² = 34 .

⇒ ( 5 sin θ - 3 cos θ )² = 34 - 25 .

⇒ ( 5 sin θ - 3 cos θ )² = 9 .

⇒ ( 5 sin θ - 3 cos θ ) = ±√9 .

⇒ ( 5 sin θ - 3 cos θ ) = ± 3 .

Hence, ( 5 sin θ - 3 cos θ ) = ± 3 .

Answered by skh2
1

 \rule{200}{2}

3 \sin\theta + 5cos \theta = 5 \\  \\  \\ {(3sin \theta + 5cos \theta)}^{2} = 25 \\  \\  \\9 {sin}^{2} \theta + 25 {cos}^{2} \theta \:  + 15sin \theta cos \theta = 25 \\  \\  \\9( {sin}^{2} \theta +  {cos}^{2} \theta) + 16 {cos}^{2} \theta + 15sin \theta cos \theta = 25 \\  \\  \\9 + 16 {cos}^{2} \theta + 15sin \theta cos \theta = 25 \\  \\  \\16 {cos}^{2} \theta + 15sin \theta cos \theta =25 - 9 = 16 \\  \\  \\15sin \theta cos \theta = 16 - 16 {cos}^{2} \theta \\  \\  \\15sin \theta cos \theta = 16(1 -  {cos}^{2} \theta \\  \\  \\15sin \theta cos \theta = 16 {sin}^{2} \theta

 \rule{200}{2}

 {(5sin \theta - 3cos \theta)}^{2} \\  \\  = 25 {sin}^{2} \theta + 9 {cos}^{2} \theta -15sin \theta cos \theta \\  \\ = 9( {sin}^{2} \theta +  {cos}^{2} \theta) + 16 {sin}^{2} \theta - 15sin \theta cos \theta \\  \\  \\ = 9 + 16 {sin}^{2} \theta - 16 {sin}^{2} \theta \\  \\  \\ = 9

 \rule{200}{2}

Hence,

5sin \theta - 3cos \theta = \pm \sqrt{9} \\  \\  \\5sin \theta - 3cos \theta = \pm3

 \rule{200}{2}

Hence, Proved!

 \rule{200}{2}

Similar questions