If
Please help
Answers
Answered by
2
Heya user,
[tex]4^a = 36^b = 9^c \\\\ log 4^a = log 36^b = log9^c \\ \\ Seperating\: two\: of \:them \:, \\ log4^a = log36^b \:\:\: and \:\:\:log 36^b = log9^c \\ a\:log4=b\:log36\:\:\:and\:\:\: b\:log 36 = c\:log9 \\=\ \textgreater \ b/a = \frac{log4}{log36} \:\:\:\:\:\:and\:\:\:\:\:\:b/c = \frac{log9}{log36} \\ =\ \textgreater \ b/a + b/c = \frac{log4 + log9}{log36} = \frac{log4+log9}{log(9*4)} = \frac{log4 + log9}{log4 + log9} = 1[/tex]
And hence, you get your :--> b/a + b/c = 1 --> Proved
[tex]4^a = 36^b = 9^c \\\\ log 4^a = log 36^b = log9^c \\ \\ Seperating\: two\: of \:them \:, \\ log4^a = log36^b \:\:\: and \:\:\:log 36^b = log9^c \\ a\:log4=b\:log36\:\:\:and\:\:\: b\:log 36 = c\:log9 \\=\ \textgreater \ b/a = \frac{log4}{log36} \:\:\:\:\:\:and\:\:\:\:\:\:b/c = \frac{log9}{log36} \\ =\ \textgreater \ b/a + b/c = \frac{log4 + log9}{log36} = \frac{log4+log9}{log(9*4)} = \frac{log4 + log9}{log4 + log9} = 1[/tex]
And hence, you get your :--> b/a + b/c = 1 --> Proved
Anonymous:
:)
Similar questions
Science,
8 months ago
Social Sciences,
8 months ago
History,
1 year ago
Physics,
1 year ago
English,
1 year ago