Math, asked by aswin2809, 1 year ago

if
4n \alpha  = \pi \\  \cot( \alpha  \times)  \times  \cot(2 \alpha )  \times  \cot(3 \alpha ) ....... \cot(2n - 1)  =
is equal to​

Answers

Answered by akashsen35
1

here is the solution of your question in easyist way you can follow to know more concept about it and if you get help from it please mark me as a brainlylist answer

Attachments:

aswin2809: and u?
akashsen35: from where are you delhi
aswin2809: iam TN
akashsen35: ooooo
akashsen35: i fron west Bengal
aswin2809: oh
akashsen35: in tamil nadu there is something temple name khumbhokonam
akashsen35: You know about Ramanujan
akashsen35: ok
akashsen35: you can also follow me
Answered by Ʀɑү
46

Step-by-step explanation:

Given:

4n \alpha  = \pi \\   :\longrightarrow  \bf{\: 2n \alpha  =  \frac{\pi}{2}}

Solution:-

\large\bf {\cot \alpha }

 \tt\cot \alpha . \cot(2n - 1)  \alpha  =  \cot\alpha   \cot( \frac{\pi}{2}  -  \alpha )     \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \therefore\bf{ \cot( \frac{\pi}{2}  -  \alpha ) =  \tan \alpha } \\  \\  \:  \:  \:  \:  \:  \:  \:   \: :  \implies  \bf{\cot\alpha . \tan\alpha  = 1  \: }

similarly,

\large\bf {\cot 2\alpha }

:\implies \cot2\alpha .\cot(2n - 2)  \alpha= 1

\large\bf {\cot 3\alpha }

:\implies \bf{ \cot3 \alpha . \cot(2n - 3)  \alpha  = 1}

\large\bf {\cot (2n-1)\alpha}

:\implies \bf \cot(n - 1) \alpha . \cot(n + 1)  \alpha  = 1

Therefore,

 \sf \cot \alpha   \cot2 \alpha  \cot3 \alpha ...... \cot(2n - 1)  \alpha

 : \implies \tt {\cot \alpha . \cot(2n - 1)}{\cot2\alpha .\cot(2n - 2)  \alpha}... ..... \cot(n - 1)  \alpha  \cot(n + 1)  \alpha . \cot \: n \alpha

  \bf \therefore \cot \: n \alpha  =  \cot( \frac{\pi}{4}  = 1)

: \implies \tt 1.1.1....1.1 \\  \\ : \implies \tt 1

Similar questions