Math, asked by Anonymous, 9 months ago

If
 {a}^{2}  +  {b}^{2}  +  \frac{1} {a}^{2}  +  \frac{1} {b}^{2}  = 4
then find the value of
 \sqrt{ {a}^{2}  + {b}^{2}   }

Answers

Answered by memanan03
1

 {a}^{2}  +  {b}^{2}  +  \frac{1}{ {a}^{2} }  +  \frac{1}{ {b}^{2} }  = 4

 \frac{ {a}^{4}  {b}^{2} +  {b}^{4}  {a}^{2} +    {a}^{2}  +  {b}^{2} }{ {a}^{2}  {b}^{2} }  = 4

4 {a}^{2}  {b}^{2}  =  {a}^{2}  {b}^{2} ( {a}^{2}  +  {b}^{2}  + 1 + 1)

 {a}^{2}  +  {b}^{2}  + 1 + 1 = 4

or

 {a}^{2}  +  {b}^{2}  = 2

Therefore

 \sqrt{ {a}^{2}  +  {b}^{2} }  =  \sqrt{2}  = 1.414

Similar questions