If are the zeros of the quadratic polynomial ,find the quadratic polynomial whose zeros are
Answers
SOLUTION :
Given : α and β are the zeroes of the quadratic polynomial f(x)= x² - 3x - 2
On comparing with ax² + bx + c,
a = 1 , b = -3 , c = -2
Sum of the zeroes = −coefficient of x / coefficient of x²
α + β = -b/a = -(-3)/1 = 3
α + β = 3 ……………………….(1)
Product of the zeroes = constant term/ Coefficient of x²
αβ = c/a = -2/1 = -2
α×β = - 2 ……………… (2)
A.T.Q
Sum of the zeroes of the required polynomial = 1/2α+β + 1/ 2β+α
= (2β + α +2α + β) / (2α + β)(2β + α) [By taking L.C.M]
= ( α +2α + 2β + β) / (2α + β)(2β + α)
= 3α + 3β / 2β (2α + β) + α (2α + β)
= 3α + 3β / 4βα + 2β² + 2α² + αβ
= 3α + 3β / 2β² + 2α² + 4βα + αβ
= 3(α + β) / 2(α² + β²) + 5βα
= 3(α + β) / 2[(α+β)² –2αβ] + 5βα
[ a² + b² = (a + b)² - 2ab ]
=(3 × 3) / 2[(3)² –2× -3 ] 5×(-2)]
[ From eq 1 & 2]
= 9 / 2 [ 9 + 6 ] –10
= 9/ 2 [13 ] –10
= 9 / 26–10
1/2α + β + 1/ 2β + α = 9/16 ……………………(3)
Product of the zeroes = 1/2α + β × 1/ 2β + α
= 1 / (2α+β)(2β+α)
= 1/ 4αβ + 2 α² + 2β² + αβ
= 1/ 5αβ + 2(α² + β²)
= 1 / 5αβ +2[(α+β)² –2αβ]
[ a² + b² = (a + b)² - 2ab ]
= 1/ 5×(−2) + 2 [(3)² –2×(−2)]
[ From eq 1 & 2]
= 1/ −10 + 2 [ 9 +4]
= 1/ -10 + 2[13]
= 1 / - 10 + 26
1/2α + β × 1/ 2β + α = 1 / 16 ………………….(4)
So, the quadratic polynomial is,
kx²–(sum of the zeroes)x + (product of the zeroes)
= k (x² + 9x/ 16 + 1/16)
[ From eq 3 & 4 ]
Hence, the required quadratic polynomial is
k(x² + 9x/ 16 + 1/16)
[K is any non zero real number]
HOPE THIS ANSWER WILL HELP YOU...
Answer:
x² - (9/16)x + (1/16)
Step-by-step explanation:
Given that α and β are zeroes of quadratic equation.
Given f(x) = x² - 3x - 2.
Here, a = 1, b = -3, c = -2.
(i)
Sum of zeroes = -b/a
⇒ α + β = -(-3)/1
⇒ α + β = 3.
(ii)
Product of zeroes = c/a
⇒ αβ = -2
Now,
(1) Sum of roots:
⇒ (1/2α + β) + (1/2β + α)
⇒ (2β + α + 2α + β)/(2α + β)(2β + α)
⇒ (3α + 3β)/(4αβ + 2α² + 2β² + αβ)
⇒ 3(α + β)/2(α + β)² + αβ
⇒ 3(3)/2(3)² -2
⇒ 9/16.
(2) Product of roots:
⇒ (1/2α + β)(1/2β + α)
⇒ (1/4αβ + 2α² + 2β² + αβ)
⇒ 1/2(α+β)²+αβ
⇒ 1/2(3)²-2
⇒ 1/16.
Required Quadratic Polynomial = x² - (Sum of roots)x + (Product of roots)
⇒ x² - (9/16)x + (1/16) = 0
⇒ 16x² - 9x + 1 = 0
Hope it helps!