Math, asked by ItzFadedGuy, 5 hours ago

If \alpha , \beta, \gamma are positive acute angles, such that:
sin( \alpha + \beta - \gamma ) = \dfrac{1}{2},
cos( \beta + \gamma - \alpha ) = \dfrac{1}{2},
tan( \gamma + \alpha - \beta ) = 1,
Then, find the values of \alpha , \beta, \gamma.
⇒ Concept: Introduction to Trigonometry
⇒ Class: 10
⇒ Thanks for helping me and kindly don't spam!

Answers

Answered by Anonymous
36

Answer:

{ \underline{ \large{ \pmb{ \sf{Given... </p><p>}}}}}

  • { \sf{sin( \alpha +  \beta \:  -  \gamma) =  \frac{1}{2} }} \\
  • { \sf{cos( \beta +  \gamma -  \alpha) =  \frac{1}{2} }} \\
  • { \sf{tan( \gamma +  \alpha -  \beta) = 1}}

{ \underline{ \large{ \pmb{ \sf{Find... }}}}}

  • { \sf{Values \: of  \: \alpha,  \:  \beta,  \:  \: \gamma}}

{ \underline{ \large{ \pmb{ \sf{Solution...}}}}}

From Question,

: Sin(α + β - γ) = 1/2

: Sin (α + β - γ) = Sin30°

: α + β - γ = 30° .......(1)

____________________

: ➙ Cos(β + γ - α) = 1/2

: ➙ Cos(β + γ - α) = cos60°

: ➙ β + γ - α = 60° ......(2)

___________________

: ➙ Tan(γ + α - β) = 1

: ➙ Tan(γ + α - β) = Tan45°

: ➙ γ + α - β = 45° .......(3)

_________________

Now By adding equation (1) & (2):

 { \implies{ \sf { α + β - γ  + β + γ - α = 30 + 60}}} \\  \\ { \implies{ \sf{2β = 90}}} \\  \\ { \implies{ \sf{β = 45° }}}

Now By Adding Equation (2) & (3) :

{ \implies{ \sf{β + γ - α   -  β + γ  + α = 60 + 45 }}} \\  \\ { \implies{ \sf{2 γ = 105}}} \\  \\ { \implies{ \sf{ γ = 55 \frac{1}{2} }}}

Now substitute both values in equation (1) :

{ \implies{ \sf{α + β - γ = 30°}}} \\  \\ { \implies{ \sf{α + 45 - 55 \frac{1}{2}  = 30}}} \\  \\ { \implies{ \sf{α =  \frac{60 + 105 - 90}{2} }}} \\  \\ { \implies{ \sf{α = 37 \frac{1}{2} }}}

Therefore,

  • α = 37½°
  • β = 46°
  • γ = 55½°

Answered by Anonymous
26

\large \underbrace{\pmb{\bf{\orange{Given:}}}}

Given that, \sf{\alpha, \beta, \gamma} are positive acute angles such that :

\sf sin(\alpha+\beta-\gamma)=\dfrac{1}{2}

\sf cos(\beta+\gamma-\alpha)=\dfrac{1}{2}

\sf tan(\gamma+\alpha-\beta)=1

\\

\large\underbrace{\pmb{\bf{\orange{To~find:}}}}

We have to find the values of \sf {\alpha,\beta,\gamma}.

\\

\large \underbrace{\pmb{\bf{\orange{Solution:}}}}

Here,

\sf sin(\alpha+\beta-\gamma)=\dfrac{1}{2}:sin30\degree ....[i]

\sf cos(\beta+\gamma-\alpha=\dfrac{1}{2}:cos60\degree ....[ii]

\sf tan(\gamma+\alpha-\beta)=1:tan45\degree ....[iii]

Now, adding [ii] and [iii] for knowing the value of  \sf\gamma :

\sf (\beta+\gamma-\alpha)+(\gamma+\alpha-\beta)=(60\degree)+(45\degree)

\sf \beta-\beta+\gamma+\gamma-\alpha+\alpha=105\degree

\sf 2\gamma=105\degree

{\pmb{\sf{\purple{Therefore,~\gamma=52.5\degree}}}}

Now, adding [i] and [ii] for knowing the value of \beta :

\sf (\alpha+\beta-\gamma)+(\beta+\gamma-\alpha)=(30\degree)+(60\degree)

\sf \alpha-\alpha+\beta+\beta-\gamma+\gamma=90\degree

\sf 2\beta=90\degree

{\pmb{\sf{\purple{Therefore,~\beta=45\degree}}}}

In [iii], substituting the values of \sf \gamma,\beta for knowing the value of \sf \alpha :

\sf \gamma+\alpha-\beta=45\degree

\sf 52.5\degree + \alpha -45\degree=45\degree

\sf 7.5+\alpha=45\degree

{\pmb{\sf{\purple{Therefore,~\alpha=37.5\degree}}}}

\\

☆.。.:*・°☆.。.:*・°☆.。.:*・°☆.。.:*・°☆

I hope this helps you anna/thambi ☺️☺️

@ItzzFreeThanker

Similar questions