If and are the zeroes of polynomial k + 4x+ 4 and if + =24, find the value of k
Answers
given
alpha and beta are the roots of quadratic equation kx^2+4x+4
(alpha)^2+(beta) ^2 = 24
Explanation
We know,
↪(a+b)^2 = a^2 + 2ab + b^2
therefor,
↪(alpha +beta) ^2 = (alpha) ^2+2ab+(beta) ^2
↪(alpha) ^2+(beta)^2=(alpha+beta)^2-2alpha x beta
⚫As a given
(alpha )^2+ (beta)^2=24
so,
↪(alpha +beta) ^2-2(alphaxbeta)=24
........(1)
------------
compare the eqn kx^2+4x+4
with general quadratic equation ax^2+bx+c
so, a=k,b=4,c=4
As we know,
alpha +beta = -b/a
and.... alpha X beta = c/a
alpha +beta = -4/k
alpha X beta = 4/k
put the above values of alpha +beta and alphaxbeta in eqn (1)
↪(-4/k)^2-2(4/k)=24
↪16/k^2-8/k=24
↪[16k-8k^2]/k^3=24
↪16k-8k^2=24k^3
↪24k^3+8k^2-16k=0
devide by k to the hole eqn...
24k^2+8k-16=0
↪24k^2+24k-16k-16=0
↪24k(k+1)-16(k+1)=0
↪(24k-16)(k+1)
↪k=16/26 = 8/13 or k= -1