Math, asked by Anonymous, 1 year ago

If  \bf{x = 5 -  {5}^{ \frac{2}{3} }  -  {5}^{ \frac{1}{3} }} . Then find the Value of (x³ - 15x² + 60x - 15) = ?

Answers

Answered by Anonymous
118

AnswEr :

\longrightarrow \large\sf{x = 5 - {5}^{ \frac{2}{3} } - {5}^{ \frac{1}{3} }}

  • Interchanging Signs

\longrightarrow \large\sf{ - x =  - 5  +  {5}^{ \frac{2}{3} }  +  {5}^{ \frac{1}{3} }}

\longrightarrow \large\sf{ 5- x = {5}^{ \frac{2}{3} }  +  {5}^{ \frac{1}{3} }}

  • Cubing Both Sides

\longrightarrow \large\sf{ (5- x)^{3}  = ( {5}^{ \frac{2}{3} }  +  {5}^{ \frac{1}{3} })^{3} }

Solving LHS Side :

 \longrightarrow  \sf{(5)}^{3}  -  {(x)}^{3}  - 3 \times 5 \times x(5 - x)

\longrightarrow \sf125 -  {x}^{3}   - 15x(5 - x)

\longrightarrow \sf{125 -  {x}^{3}   - 75x  + 15 {x}^{2}}

Solving RHS Side :

 \longrightarrow \sf(5^{\frac{2}{ \cancel3}})^{ \cancel3} +  (5^{\frac{1}{ \cancel3}})^{ \cancel3} + 3 \times  {5}^{ \frac{2}{3} }    \times {5}^{{\frac{1}{3} }} ( {5}^{ \frac{2}{3} }  +  {5}^{ \frac{1}{3} })

 \longrightarrow \sf( {5})^{2} +  ( {5})^{1} + 3 \times  {5}^{ (\frac{2}{3}  +  \frac{1}{3}) } ( {5}^{ \frac{2}{3} }  +  {5}^{ \frac{1}{3} })

  • we can change  \sf{({5}^{ \frac{2}{3} }  +  {5}^{ \frac{1}{3}}) =( 5 - x) }

 \longrightarrow \sf{25 + 5 + (3 \times  {5}^{  \cancel\frac{3}{3}}) ( 5 - x)}

 \longrightarrow \sf 30 + 15 ( 5 - x)

 \longrightarrow \sf30 + 75 - 15x

\longrightarrow \sf105 - 15x

━━━━━━━━━━━━━━━━━━━━━━━━

Combining LHS and RHS Together :

\longrightarrow \sf{125 -  {x}^{3}   - 75x  + 15 {x}^{2}= 105 - 15x}

\longrightarrow \sf{125 - 105 -  {x}^{3}   - 75x  +  15x+ 15 {x}^{2}= 0}

\longrightarrow \sf{20-  {x}^{3}   - 60x+ 15 {x}^{2}= 0}

\longrightarrow \sf{20 = {x}^{3}    +  60x - 15 {x}^{2}}

\longrightarrow \sf{15 + 5= {x}^{3}    +  60x - 15 {x}^{2}}

\longrightarrow \sf{x}^{3} - 15 {x}^{2} + 60x - 15 = 5

 \therefore \underline{\sf{Value \: of \: {x}^{3} -15{x}^{2} + 60x - 15 = 5}}

Similar questions