Math, asked by NonLife, 4 days ago

If :
 \boxed{ \begin{array}{cc}\sf \bull \: x = asec \theta \: cos \phi \\ \\ \sf\bull \: y = bsec \theta sin \phi \: \: \\ \\ \sf \bull \: z = ctan \theta \: \: \: \: \: \: \: \: \: \: \end{array}}

Then find the value of :
 \boxed{ \sf \: \dfrac{ {x}^{2} }{ {a}^{2} } + \dfrac{ {y}^{2} }{ {b}^{2} } }

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given that,

\rm \: x = asec \theta \: cos \phi \\

\rm \: y = bsec \theta sin \phi \\

and

\rm \: z = ctan \theta \\

Now, Consider

\rm \: \dfrac{ {x}^{2} }{ {a}^{2} } + \dfrac{ {y}^{2} }{ {b}^{2} }  \\

On substituting the values of x and y, we get

\rm \: =  \: \dfrac{ {(asec \theta \: cos \phi)}^{2} }{ {a}^{2} } + \dfrac{ {(bsec \theta sin \phi)}^{2} }{ {b}^{2} }  \\

\rm \: =  \:  {sec}^{2}\theta  {sin}^{2}\phi  +  {sec}^{2}\theta  {cos}^{2}\phi  \\

\rm \: =  \:  {sec}^{2}\theta ( {sin}^{2}\phi  +  {cos}^{2}\phi ) \\

We know,

\boxed{\sf{  \: {sin}^{2}x +  {cos}^{2}x = 1 \: }} \\

So, on using this identity, we get

\rm \: =  \:  {sec}^{2}\theta  \times 1 \\

\rm \: =  \:  {sec}^{2}\theta  \\

can be rewritten as

\rm \: =  \:1 +   {tan}^{2}\theta  \\

can be further rewritten as

\rm \: =  \: 1 + \dfrac{ {c}^{2}  {tan}^{2} \theta }{ {c}^{2} }  \\

\rm \: =  \: 1 + \dfrac{ {(c \: tan\theta )}^{2} }{ {c}^{2} }  \\

\rm \: =  \: 1 + \dfrac{ { {z}^{2} }}{ {c}^{2} }  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: [\rm \:  \because \: z = ctan \theta \: ] \\

Hence,

\rm\implies \: \:\boxed{\sf{  \:  \: \rm \: \dfrac{ {x}^{2} }{ {a}^{2} } + \dfrac{ {y}^{2} }{ {b}^{2} }  \: =  \: 1 + \dfrac{ { {z}^{2} }}{ {c}^{2} } \:  \:  }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions