Math, asked by 12ahujagitansh, 1 month ago

If
 {cos}^{ - 1}x -  {sin}^{ - 1}x = 0

Find the value of x.​

Answers

Answered by abhi569
7

Answer:

1/√2

Step-by-step explanation:

                     Method 1:

Given, cos⁻¹x - sin⁻¹ = 0       ...(1)

 We know cos⁻¹θ + sin⁻¹θ = π/2  is defined for all possible values.

 ∴ cos⁻¹x + sin⁻¹x = π/2         ...(2)

On adding (1) and (2), we get

   ⇒ 2cos⁻¹x = π/2        ⇒ cos⁻¹x = π/4

             ∴ cos(π/4) = x

             ⇒ 1/√2 = x

                    Method 2:

Given, cos⁻¹x - sin⁻¹x = 0

        ⇒ cos⁻¹x = sin⁻¹x

        ⇒ sin(cos⁻¹x) = sin(sin⁻¹x)

        ⇒ √(1 - x²) = x

        ⇒ 1 - x² = x²

        ⇒ 1 = 2x²

        ⇒ 1/√2 = x

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given inverse Trigonometric equation is

\rm :\longmapsto\: {cos}^{ - 1}x -  {sin}^{ - 1}x = 0 -  -  - (1)

We know,

\rm :\longmapsto\: {cos}^{ - 1}x +  {sin}^{ - 1}x = \dfrac{\pi}{2} -  -  - (2)

On adding equation (1) and (2), we get

\rm :\longmapsto\: {cos}^{ - 1}x +  {sin}^{ - 1}x  +  {cos}^{ - 1}x -  {sin}^{ - 1} x = \dfrac{\pi}{2}

\rm :\longmapsto\: 2{cos}^{ - 1}x  = \dfrac{\pi}{2}

\rm :\longmapsto\: {cos}^{ - 1}x  = \dfrac{\pi}{4}

\rm :\longmapsto\: x  = cos\dfrac{\pi}{4}

\bf\implies \:x = \dfrac{1}{ \sqrt{2} }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf  & \bf  \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  {sin}^{ - 1}x +  {cos}^{ - 1}x = \dfrac{\pi}{2}    & \sf x \:  \in \: [ - 1, \: 1] \\ \\ \sf {tan}^{ - 1}x +  {cot}^{ - 1}x = \dfrac{\pi}{2} & \sf x \:  \in \: ( -  \infty , \:  \infty ) \\ \\ \sf {sec}^{ - 1}x +  {cosec}^{ - 1}x = \dfrac{\pi}{2} & \sf x \:  \in \: ( -  \infty ,1] \:  \cup \:  [1, \:  \infty )\end{array}} \\ \end{gathered}

Similar questions