Math, asked by gnithin20, 1 year ago

if
 \cos( \beta  +  \sin( \beta  ) )  =    \sqrt{2}  \cos( \beta )
then show that
 \cos( \beta)  -  \sin( \beta )  =  \sqrt{2}  \sin( \beta )

Answers

Answered by UltimateMasTerMind
18
Que :-

Given that :- CosA + SinA = √2 CosA

Then Prove That:- Cos A - SinA = √2 SinA.

Solution :-

CosA + SinA = √2 CosA

Squaring on both the sides. we get,

( CosA + SinA )² = ( √2 cosA)²

=> Cos²A + Sin²A + 2SinA. CosA = 2 Cos²A

=> Sin²A + 2SinA. CosA = 2 Cos²A - Cos²A

=> Sin²A + 2SinA. CosA = Cos²A

Adding Sin²A both the sides. we get,

=> Sin²A + Sin²A + 2SinA. CosA = Cos²A + Sin²A

=> 2 Sin²A = Sin²A + Cos²A - 2SinA. CosA

=> 2 Sin²A = (CosA - SinA)²

=> CosA - SinA = √(2 Sin²A)

=> CosA - SinA = √2 SinA.

Hence Proved.

Anonymous: Amazing...✔️✔️
Anonymous: Fabulous ✔️✔️
Anonymous: Ekdam mst re...✔️✔️
Anonymous: Awesome ❤
Anonymous: mujhe to abhi tak samajh hi ni aa ra ki ye sin , cos kis khet ki muli h xD
Anonymous: is year m pata chl jayega
Kusumsahu7: Awesome
Similar questions