Math, asked by homie4138, 1 year ago

If  cos \theta=\frac{7}{25} , then find the values of  cosec \theta \hspace{3}and \hspace{3} cot \theta

Answers

Answered by Niharika17703
0

Answer:


Step-by-step explanation:





Hope it works!!!!

Attachments:
Answered by hukam0685
0
Solution:

We know that

 cos \theta=\frac{Base}{Hypotenuse}\\\\cos \theta=\frac{7}{25} =k\\\\

So Base = 7 k

Hypotenuse= 25 k

So,in a right angle triangle if Base and Hypotenuse is given so by Pythagoras theorem we can find perpendicular

 {(perpendicular)}^{2} = {(hypotenuse)}^{2} - ( {base)}^{2} \\ \\ = ( {25k)}^{2} - ( {7k)}^{2} \\ \\ = 625 {k}^{2} - 49 {k}^{2} \\ \\ = 576 {k}^{2} \\ \\ perpendicular = \sqrt{576 {k}^{2} } = 24k \\

Now to find

1)
cosec \: \theta = \frac{hypotenuse}{perpendicular} \\ \\ cosec \: \theta = \frac{25k}{24k} \\ \\ cosec \: \theta = \frac{25}{24} \\ \\

2)
cot \: \theta = \frac{base}{perpendicular} \\ \\ cot \: \theta = \frac{7k}{24k} \\ \\ cot \: \theta = \frac{7}{24} \\ \\

Hope it helps you.
Similar questions