If . Prove that
Answers
Answered by
8
Step-by-step explanation:
Given Equation is cosθ - sinθ = √2 sinθ
It can be written as,
⇒ (cosθ - sinθ)² = 2sin²θ
⇒ cos²θ + sin²θ - 2cosθsinθ = sin²θ + sin²θ
⇒ sin²θ = cos²θ - 2sinθcosθ
⇒ cos²θ + sin²θ + 2sinθcosθ = 2cos²θ
⇒ (cosθ + sinθ)² = 2cos²θ
⇒ cosθ + sinθ = √2cosθ
Hope it helps!
Answered by
0
cosθ-sinθ=√2sinθ
or, cosθ=√2sinθ+sinθ
or, cosθ=sinθ(√2+1)
or, cosθ=sinθ(√2+1)(√2-1)/(√2-1)
or, √2cosθ-cosθ=sinθ{(√2)²-(1)²}
or, √2cosθ-cosθ=sinθ(2-1)
or, -cosθ-sinθ=-√2cosθ
or, cosθ+sinθ=√2cosθ
Similar questions