Math, asked by papafairy143, 18 days ago

If
 {e}^{( {sin}^{2} x +  {sin}^{4}x +   {sin}^{6}x +  -  -  -  \infty )ln2 }  \: satisfies \\ the \: equation \:  {x}^{2}  - 9x + 8 = 0 \: find \:  \\ the \: value \: of \:  \frac{cosx}{sinx + cosx}  \: where \: 0 < x <  \frac{\pi}{2}

Please explain with proper explanation​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given series is

\rm \: {e}^{( {sin}^{2}x +  {sin}^{4}x +  {sin}^{6}x +  -  -  -  \infty )ln2 }

We know,

\rm \: {sin}^{2}x +  {sin}^{4}x +  {sin}^{6}x +  -  -  -  \infty \: forms \: an \: infinite \: gp \: with

\rm \: First \: term, \: a =  {sin}^{2}x

\rm \: Common\: ratio, \: r =  {sin}^{2}x

We know,

Sum of infinite GP series with First term a and common ratio r respectively is given by

\boxed{\tt{ S_ \infty  \:  =  \:  \frac{a}{1 - r}  \:  \:  \:  \: \:provided \: that \:  |r|  < 1 }} \\

So, using this result, we get

\rm \:  =  \:  {\bigg(e \bigg) }^{\dfrac{ {sin}^{2} x}{1 -  {sin}^{2} x} \times  ln2}

\rm \:  =  \:  {\bigg(e \bigg) }^{\dfrac{ {sin}^{2} x}{{cos}^{2} x} \times  ln2}

\rm \:  =  \:  {e}^{ {tan}^{2}x \: ln2}

\rm \:  =  \:  {e}^{ln \:  {2}^{ {tan}^{2}x } }

\rm \: =   \:  {2}^{ {tan}^{2}x }

So,

\rm\implies \:\boxed{\tt{ \rm \: {e}^{( {sin}^{2}x +  {sin}^{4}x +  {sin}^{6}x +  -  -  -  \infty )ln2 }  =  {2}^{ {tan}^{2} x}}} \\

Now, Further the roots of the equation

\rm \:  {x}^{2} - 9x + 8 = 0

\rm \:  {x}^{2} - 8x - x + 8 = 0

\rm \: x(x - 8) - 1(x - 8) = 0

\rm \: (x - 8)(x - 1) = 0

\rm\implies \:x = 8 \:  \:  \: or \:  \:  \: x = 1

\rm\implies \: {2}^{ {tan}^{2} x}  = 8 \:  \:  \: or \:  \:  \:  {2}^{{tan}^{2} x} = 1

\rm\implies \: {2}^{ {tan}^{2} x}  =  {2}^{3}  \:  \:  \: or \:  \:  \:  {2}^{{tan}^{2} x} =  {2}^{0}

\rm\implies \:{tan}^{2} x = 3 \:  \: or \:  \: {tan}^{2} x = 0

\rm\implies \:tanx =  \:  \pm \:  \sqrt{3}  \:  \: or \:  \: tanx = 0

As, it is given that

\rm \:0 < x < \dfrac{\pi}{2}

\rm\implies \:tanx =  \sqrt{3}

Now, Consider

\rm \: \dfrac{cosx}{cosx + sinx}

can be rewritten as

\rm \:  =  \: \dfrac{1}{\dfrac{cosx + sinx}{cosx} }

\rm \:  =  \: \dfrac{1}{1 + \dfrac{sinx}{cosx} }

\rm \:  =  \: \dfrac{1}{1 +tanx }

\rm \:  =  \: \dfrac{1}{1 + \sqrt{3}  }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{\sqrt{3} + 1}  \times \dfrac{ \sqrt{3}  - 1}{ \sqrt{3}  - 1}

\rm \:  =  \: \dfrac{ \sqrt{3}  - 1}{ {( \sqrt{3} )}^{2}  -  {1}^{2} }

\rm \:  =  \: \dfrac{ \sqrt{3}  - 1}{ 3 - 1 }

\rm \:  =  \: \dfrac{ \sqrt{3}  - 1}{2 }

Hence,

\rm\implies \:\boxed{\tt{  \frac{cosx}{cosx + sinx} \rm \:  =  \: \dfrac{ \sqrt{3}  - 1}{2 }  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULA USED

\boxed{\tt{  {e}^{ln \: x}  = x \: }} \\

\boxed{\tt{ y \: lnx \:  =  \: ln \:  {x}^{y}  \: }} \\

Answered by XxitzZBrainlyStarxX
6

Question:-

\sf \large If  \: {e}^{( {sin}^{2} x + {sin}^{4}x + {sin}^{6}x + - - - \infty )ln2 } \: satisfies \\ \sf \large the \: equation \: {x}^{2} - 9x + 8 = 0 \: find \: \\ \sf \large the \: value \: of \: \frac{cos \: x}{sin \: x + cos \: x} \: where \: 0 < x < \frac{\pi}{2} .

Given:-

\sf \large {e}^{( {sin}^{2} x + {sin}^{4}x + {sin}^{6}x + - - - \infty )ln2 }

To Find:-

\sf \large \frac{cos \: x}{sin \: x + cos  \: x}

Solution:-

\sf \large Let, y \:  \sf \large {e}^{ ( {sin}^{2} x + {sin}^{4}x + {sin}^{6}x + - - - \infty )ln2 }

 \sf \large = exp  \bigg \{ \frac{sin {}^{2} x}{1 - sin {}^{2}x}  \bigg \}log2

\sf \large = exp[(tan {}^{2}x)log2 ]

 \sf \large = exp[log2 \: tan {}^{2}x ]

\sf \large⇒ y = 2 \: tan {}^{2} x

\sf \large Now,2tan {}^{2} x \: satisfies \: the \: equation

 \sf \large x {}^{2}  - 9x + 8 = 0

  \sf \large⇒ x = 8 \: (or) \: 1

 \sf \large2tan {}^{2} x = 2 {  }^{3}  \: (or) \: 2tan {}^{2} x = 1 = 2 {}^{0}

 \sf \large⇒ tan {}^{2}  x = 3 \: (or) \: tan {}^{2} x = 0

 \sf \large As,0 < x <  \frac{\pi}{2} ,tan \: x =  \sqrt{3}

 \sf \large \therefore \: x =  \frac{\pi}{3}

 \sf \large Now, \frac{cos \: x}{cos \: x + sin \: x}  =  \frac{cos \frac{\pi}{3} }{cos \frac{\pi}{3} + sin \frac{\pi}{3}  }  =  \frac{1}{1 +  \sqrt{3} }

 \sf \large =   \frac{ \sqrt{3} - 1 }{2}

Answer:-

{ \boxed{ \sf \large \blue{\sf \large \frac{cos \: x}{sin \: x + cos  \: x}  =  \frac{ \sqrt{3} - 1 }{2} .}}}

Hope you have satisfied.

Similar questions