Math, asked by abidaijaz5416, 1 year ago

If  e^x+ e^y=e^{x+y} , prove that  \frac{dy}{dx}=-e^{y-x}

Answers

Answered by rajeshkhanna119
0

this will help u.........

Attachments:
Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given that,

\sf \:  {e}^{x} + {e}^{y} = {e}^{x + y} \\  \\

\sf \:  {e}^{x} + {e}^{y} = {e}^{x} \: {e}^{y} \\  \\

\sf \:  \dfrac{{e}^{x} + {e}^{y}}{{e}^{x} \: {e}^{y}}  = 1\\  \\

\sf \:  \dfrac{{e}^{x}}{{e}^{x} \: {e}^{y}}  + \dfrac{{e}^{y}}{{e}^{x} \: {e}^{y}}  = 1\\  \\

\sf \: {e}^{ - y}  + {e}^{ - x}  = 1\\  \\

On differentiating both sides w. r. t. x, we get

\sf \: \dfrac{d}{dx}[  {e}^{ - y}  + {e}^{ - x} ] = \dfrac{d}{dx}(1)\\  \\

\sf \: \dfrac{d}{dx}{e}^{ - y} + \dfrac{d}{dx}{e}^{ - x} = 0 \\  \\

\sf \: {e}^{ - y}\dfrac{d}{dx}( - y) + {e}^{ - x}\dfrac{d}{dx}( - x) = 0 \\  \\

\sf \: - {e}^{ - y}\dfrac{dy}{dx} - {e}^{ - x} = 0 \\  \\

\sf \: - {e}^{ - y}\dfrac{dy}{dx} = {e}^{ - x}  \\  \\

\sf \: \dfrac{dy}{dx} =  - \dfrac{{e}^{ - x}}{{e}^{ - y}}   \\  \\

\implies\sf \: \dfrac{dy}{dx} \:  = \:   - \:  {e}^{y - x} \\  \\

\rule{190pt}{2pt}

Formulae Used

\sf \: \dfrac{d}{dx}[ f(x) + g(x)] = \dfrac{d}{dx}f(x) + \dfrac{d}{dx}g(x) \\  \\

\sf \: \dfrac{d}{dx}k = 0 \\  \\

\sf \: \dfrac{d}{dx}{e}^{x} = {e}^{x} \\  \\

\sf \: \dfrac{d}{dx}x = 1 \\  \\

\sf \:  {x}^{m} \div  {x}^{n} =  {x}^{m - n}  \\  \\

Similar questions