If , show that
Answers
Answered by
4
hey mate
here's the solution
here's the solution
Attachments:
Answered by
1
hey buddy here's ur answer,,,
Answer:
dydx=e^x(e^y−1)e^y(1−e^x)
Explanation:
Differentiating e^x+e^y=e^x+y
e^x+e^ydydx=e^x+y(1+dydx)
or e^x+e^ydydx=e^x+y+e^x+ydydx
or e^ydydx−e^x+ydydx=e^x+y−e^x
or (e^y−e^x+y)dydx=(e^x+y−e^x)
or dydx=e^x+y−e^xe^y−e^x+y=e^x(e^y−1)e^y(1−e^x)
hope it helps u buddy⏩⏩⏩
Answer:
dydx=e^x(e^y−1)e^y(1−e^x)
Explanation:
Differentiating e^x+e^y=e^x+y
e^x+e^ydydx=e^x+y(1+dydx)
or e^x+e^ydydx=e^x+y+e^x+ydydx
or e^ydydx−e^x+ydydx=e^x+y−e^x
or (e^y−e^x+y)dydx=(e^x+y−e^x)
or dydx=e^x+y−e^xe^y−e^x+y=e^x(e^y−1)e^y(1−e^x)
hope it helps u buddy⏩⏩⏩
Similar questions