Math, asked by yashwanth1639, 1 year ago

If y\sqrt{1-x^{2}} + x\sqrt{1-y^{2}} = 1 show that \frac{dy}{dx}  = -\sqrt{\frac{1-y^{2}}{1-x^{2}}}

Answers

Answered by DeeptiMohanty
0
\blue{\mathfrak{Here is your answer.......Hope this helps you....}}
Attachments:
Answered by sonuojha211
0

Answer:

We have,

y\sqrt{1-x^{2}} + x\sqrt{1-y^{2}} = 1.

To show:

\dfrac{\text dy}{\text dx}=-\sqrt{\dfrac{1-y^2}{1-x^2}}.

On differentiating both the sides with respect to x, we get,

\dfrac{\text d}{\text dx}\left (y\sqrt{1-x^{2}} + x\sqrt{1-y^{2}} \right ) = \dfrac{\text d}{\text dx}(1)\\\sqrt {1-x^2}\dfrac{\text dy}{\text dx}+y\dfrac{\text d}{\text dx}(\sqrt{1-x^2})+\sqrt {1-y^2}\dfrac{\text dx}{\text dx}+x\dfrac{\text d}{\text dx}(\sqrt{1-y^2})=0\\\sqrt {1-x^2}\dfrac{\text dy}{\text dx}+\dfrac{y}{2\sqrt{1-x^2}}\dfrac{\text d}{\text dx}(1-x^2)+\sqrt {1-y^2}+\dfrac{x}{2\sqrt{1-y^2}}\dfrac{\text d}{\text dx}(1-y^2)=0\\

\sqrt {1-x^2}\dfrac{\text dy}{\text dx}+\dfrac{y}{2\sqrt{1-x^2}}(-2x)+\sqrt {1-y^2}+\dfrac{x}{2\sqrt{1-y^2}}(-2y)\dfrac{\text dy}{\text dx}=0\\\left (\sqrt {1-x^2}+\dfrac{x}{2\sqrt{1-y^2}}(-2y) \right )\dfrac{\text dy}{\text dx}+\dfrac{y}{2\sqrt{1-x^2}}(-2x)+\sqrt{1-y^2}=0\\\left (\sqrt {1-x^2}-\dfrac{xy}{\sqrt{1-y^2}} \right )\dfrac{\text dy}{\text dx}+\left( \sqrt{1-y^2}-\dfrac{xy}{\sqrt{1-x^2}} \right )=0\\

\left (\dfrac{\sqrt {1-x^2}\sqrt{1-y^2}-xy}{\sqrt{1-y^2}} \right )\dfrac{\text dy}{\text dx}+\left (\dfrac{\sqrt {1-y^2}\sqrt{1-x^2}-xy}{\sqrt{1-x^2}} \right )=0\\\Rightarrow \dfrac{\text dy}{\text dx}=\dfrac{-\left (\dfrac{\sqrt {1-y^2}\sqrt{1-x^2}-xy}{\sqrt{1-x^2}} \right )}{\left (\dfrac{\sqrt {1-y^2}\sqrt{1-x^2}-xy}{\sqrt{1-y^2}} \right )}=-\dfrac{\sqrt{1-y^2}}{\sqrt{1-x^2}}=-\sqrt{\dfrac{1-y^2}{1-x^2}}.

It is the final expression, which was to be shown.

Similar questions