Math, asked by jhimlichaudhuri1974, 28 days ago

if :
 \frac{3}{ \sqrt{2} }  = a + b \sqrt{2}
then find the values of a and b

Answers

Answered by vikkiain
0

a = 0 \:  \:  \: and \:  \:  \: b =  \frac{3}{2}

Step-by-step explanation:

Given, \:  \:  \:  \frac{3}{ \sqrt{2} } = a + b \sqrt{2} \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  >  \:  \:  \frac{3}{ \sqrt{2} }  \times  \frac{ \sqrt{2} }{ \sqrt{2} }  = a +  b\sqrt{2}  \\  =  >  \:  \:   \frac{3 \sqrt{2} }{2}  = a + b \sqrt{2}  \\  \:  \:  \:  \:  \:  \:  \:  \:  =  >  \:  \: 0 +  \frac{3}{2}  \sqrt{2}  = a + b \sqrt{2}  \\ By  \:  \: comparison, \\ then, \:  \: a = 0 \:  \:  \: and \:  \:  \: b =  \frac{3}{2}

Answered by f6194905
0

Step-by-step explanation:

Given,

2

3

=a+b

2

=>

2

3

×

2

2

=a+b

2

=>

2

3

2

=a+b

2

=>0+

2

3

2

=a+b

2

Bycomparison,

then,a=0andb=

2

3

Similar questions