Math, asked by GowthamGanesh, 1 year ago

If
 \frac{3 +  \sqrt{7} }{3 -  \sqrt{7} }  = a +  b \sqrt{7}
find values of "a" and "b"

Answers

Answered by KarupsK
0
Mark this answer as brainliest answer
Attachments:
Answered by rohit710
6
Heya......!!!

By simple Rationalisation

 \frac{3 +  \sqrt{7} }{3 -  \sqrt{7} } \times  \frac{3 +  \sqrt{7} }{3 +  \sqrt{7} }  \\   \frac{(3 +  \sqrt{7} ) {}^{2} }{3 {}^{2}   -  \sqrt{7}  {}^{2} }  \\  \frac{9 + 7 + 6 \sqrt{7} }{9 - 7}  \\  \frac{16 + 6 \sqrt{7} }{2}  \\  \\ finlly \: it \:  \: comes \:  \:  =  >  > 8 + 3 \sqrt{7}
So Equating RHS to LHS

8+3√7. = a+b√7
Hence ,,

➡a = 8
➡b = 3


Hope it helps u ^_^
Similar questions