Math, asked by aryan021212, 21 days ago

If

 \lim \: x \to \: 0 \:  \frac{sin(\pi \:  {cos}^{2}x) }{ k{x}^{2} } = 1  \\

find the value of k​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that,

\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{sin(\pi \:  {cos}^{2} x)}{ {k \: x}^{2} }  = 1 \\

If we substitute directly x = 0, we get

\rm \:   \frac{sin(\pi \:  {cos}^{2} 0)}{ {k \: 0}^{2} }  = 1 \\

\rm \:   \frac{sin\pi }{0}  = 1 \\

\rm \:   \frac{0 }{0}  = 1 \\

which is indeterminant form.

So, Consider again

\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{sin(\pi \:  {cos}^{2} x)}{ {k \: x}^{2} }  = 1 \\

can be rewritten as

\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{sin[\pi \: (1 - {sin}^{2} x)]}{ {k \: x}^{2} }  = 1 \\

\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{sin[\pi - \pi{sin}^{2} x]}{ {k \: x}^{2} }  = 1 \\

We know,

\boxed{\sf{  \:sin(\pi - x)  \: =  \: sinx \: }} \\

So, using this result, we get

\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{sin[\pi{sin}^{2} x]}{ {k \: x}^{2} }  = 1 \\

\rm \: \displaystyle\lim_{x \to 0}\rm  \frac{sin[\pi{sin}^{2} x]}{\pi \:  {sin}^{2}x }  \times  \frac{\pi \:  {sin}^{2} x}{k \:  {x}^{2} }  = 1 \\

We know,

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x}  = 1 \: }} \\

So, using this result, we get

\rm \:  {1}^{2} \times \pi \times  \dfrac{ {1}^{2} }{k}   = 1

\rm \: \dfrac{\pi}{k} = 1 \\

\rm\implies \:k \:  =  \: \pi \:  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x}  = 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x}  = 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x}  = 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x}  = 1 \: }} \\

\boxed{\sf{  \:\displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x}  = loga \: }} \\


amansharma264: Good
Similar questions