Math, asked by jahanavi15novmpequfe, 1 year ago

if
 log_{7}(2)
= m, then
 log_{49}(28)
Is equal to

a) 2(1+2m)
b)1+2m/2
c)2/1+2m
d)1+m​

Answers

Answered by brunoconti
3

Answer:

Step-by-step explanation:

BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST

Attachments:

brunoconti: thks
Answered by Anonymous
2

Heya!!

 log_{7}(2)  = m \:  \\  \\ find \:  \:  log_{49}(28)  \\  \\  log_{49}(28)  =  log_{7 {}^{2} }(2 \times 14)  \\  \\  log_{49}(28) = (1 \div 2) log_{7}(2 \times 14)   \\ becoz \:  \:  log_{x {}^{n} }(y)  = (1 \div n)  log_{x}(y)  \\  \\  log_{49}(28)  = (1 \div 2) log_{7}(2)  + (1 \div 2)  log_{7}(14)  \\  \\  log_{49}(28)  = (1 \div 2)m + (1 \div 2) log_{7}(2  \times 7)  \\  \\  log_{49}(28)  = (1 \div 2)m + (1 \div 2)m + (1 \div 2) \\ becoz \:  \:  log_{ \alpha }( \alpha )  = 1 \\  \\  log_{49}(28)  = (1 + 2m) \div 2

Similar questions