Math, asked by senboni123456, 1 month ago

If M=[1+ \frac{1}{2^\frac{2}{3}}+frac{1}{3^\frac{2}{3}}+ ...+frac{1}{1000^\frac{2}{3}}] \\ , where [.] denotes greatest integer function, then find the value of M - 20

Answers

Answered by shashiraw780
0

Answer:

The solution set of ln(5−7x)⩽1 is given by,

A. [5−e7,57)

B. [2−e3,23)

C. (−10,7)

D. All real numbers

Answered by pk1806880
1

We can approximate the given series as an integral using the following inequality:

\rm \frac{1}{(k+1)^{\frac{2}{3}}} < \int_{k}^{k+1} \frac{1}{x^{\frac{2}{3}}} dx < \frac{1}{k^{\frac{2}{3}}}

Integrating both sides of the inequality from 1 to 1000, we get:

\rm \int_{1}^{1001} \frac{1}{x^{\frac{2}{3}}} dx < M < 1 + \int_{1}^{1000} \frac{1}{x^{\frac{2}{3}}} dx

Evaluating the integrals, we get:

\rm \frac{3}{2} (1 - \frac{1}{1001^{\frac{1}{3}}}) < M < 1 + \frac{3}{2}(1 - \frac{1}{1000^{\frac{1}{3}}})

Using this inequality, we can find the greatest integer function of M as:

\rm \lfloor M \rfloor = 1 + \lfloor \frac{3}{2}(1 - \frac{1}{1000^{\frac{1}{3}}}) \rfloor

Evaluating this expression, we get:

\rm \lfloor M \rfloor = 1

Therefore, \rm M - 20 = (1 + \frac{3}{2}(1 - \frac{1}{1001^{\frac{1}{3}}})) - 20 \\ = \frac{1}{2}(41 - \frac{3}{1001^{\frac{1}{3}}})

Using a calculator, we can evaluate \rm M - 20 as:

\rm M - 20 \approx 20.998

Note that this is an approximation since we used an inequality to estimate the value of M. The actual value of M could be slightly different, but it should be very close to this approximation.

Similar questions