Math, asked by gadgetotechblogs, 7 months ago

if p = a(b-c) , q = b(c-a) , r = c(a-b) then (p/a)^{3} + (q/b)^{3} + (r/c)^{3}

Answers

Answered by CharmingPrince
2

Answer:

Given:

  • p=a(b-c)
  • q = b(c - a)
  • r = c(a-b)

Solution:

\left( \dfrac{p}{a} \right)^3 + \left( \dfrac{q}{b} \right)^3 + \left( \dfrac{r}{c} \right)^3

\implies \left( \dfrac{a\!\!\!/(b-c)}{a\!\!\!/} \right)^3 + \left( \dfrac{b\!\!\! /(c-a)}{b\!\!\!/} \right)^3 + \left( \dfrac{c\!\!\!/(a-b)}{c\!\!\!/} \right)^3

\implies (b-c)^3 + (c-a)^3 + (a-b)^3

Let:

b- c = x \\ c- a = y \\ a-b = z

\implies x + y+z = b-c + c-a + a-b

\implies x + y + z = 0

By identity :

\therefore x^3 + y^3 + z^3 = 3xyz

\implies (b-c)^3 + (c-a)^3 + (a-b)^3 = 3(a-b)(b-c)(c-a)

__________________________

Similar questions