Math, asked by PragyaTbia, 1 year ago

If \rm \displaystyle \lim_{x\to a}\ \frac{x^{5}-a^{5}}{x-a}=405, find all possible values of a.

Answers

Answered by mysticd
3
Solution ;

\rm \displaystyle \lim_{x\to a}\ \frac{x^{5}-a^{5}}{x-a}=405

************************************
We know that ,

\rm \displaystyle \lim_{x\to a}\ \frac{x^{n}-a^{n}}{x-a}

= n × $a^{(n-1)}$

*************************†**********

=> 5 × $a^{(5-1)}$ = 405

=> a⁴ = 405/5

=> a⁴ = 81

=> a⁴ = 3⁴

=> a = 3

Therefore ,

a = 3

••••
Similar questions
Math, 1 year ago
Math, 1 year ago