If
, find all possible values of a.
Answers
Answered by
3
Solution ;
![\rm \displaystyle \lim_{x\to a}\ \frac{x^{5}-a^{5}}{x-a}=405 \rm \displaystyle \lim_{x\to a}\ \frac{x^{5}-a^{5}}{x-a}=405](https://tex.z-dn.net/?f=%5Crm+%5Cdisplaystyle+%5Clim_%7Bx%5Cto+a%7D%5C+%5Cfrac%7Bx%5E%7B5%7D-a%5E%7B5%7D%7D%7Bx-a%7D%3D405)
************************************
We know that ,
![\rm \displaystyle \lim_{x\to a}\ \frac{x^{n}-a^{n}}{x-a} \rm \displaystyle \lim_{x\to a}\ \frac{x^{n}-a^{n}}{x-a}](https://tex.z-dn.net/?f=%5Crm+%5Cdisplaystyle+%5Clim_%7Bx%5Cto+a%7D%5C+%5Cfrac%7Bx%5E%7Bn%7D-a%5E%7Bn%7D%7D%7Bx-a%7D)
= n × $a^{(n-1)}$
*************************†**********
=> 5 × $a^{(5-1)}$ = 405
=> a⁴ = 405/5
=> a⁴ = 81
=> a⁴ = 3⁴
=> a = 3
Therefore ,
a = 3
••••
************************************
We know that ,
= n × $a^{(n-1)}$
*************************†**********
=> 5 × $a^{(5-1)}$ = 405
=> a⁴ = 405/5
=> a⁴ = 81
=> a⁴ = 3⁴
=> a = 3
Therefore ,
a = 3
••••
Similar questions