Math, asked by PragyaTbia, 1 year ago

Evaluate:
\rm \displaystyle \lim_{x \to \infty}\ \frac{(3x+4)(4x-6)(5x+2)}{4x^{3}+2x^{2}-1}

Answers

Answered by mysticd
0
Solution :

\rm \displaystyle \lim_{x \to \infty}\ \frac{(3x+4)(4x-6)(5x+2)}{4x^{3}+2x^{2}-1}

Divide numerator and denominator by

x³ , we get

= \rm \displaystyle \lim_{x \to \infty}\ \frac{x^{3}[(3+\frac{4}{x})(4-\frac{6}{x})(5+\frac{2}{x})]}{x^{3}[(4+\frac{2}{x}-\frac{1}{x^3})]}

= [ ( 3+0)(4-0)(5+0)]/[ 4+0-0 ]

= ( 3 × 4 × 5 )/4

= 3 × 5

= 15

••••
Similar questions
Math, 1 year ago
Math, 1 year ago