If
the find the value of,
Answers
Solution :-
Given that
sin θ + sin ϕ = a --------(1)
On squaring both sides then
(sin θ + sin ϕ)² = a²
=> sin² θ+sin² ϕ+ 2 sin θ sin ϕ = a²------(2)
Since , (a+b)² = a²+2ab+b²
And
cos θ + cos ϕ = b -------(3)
On squaring both sides then
=> cos² θ+cos² ϕ+2 cos θ cos ϕ = b²---(4)
Since , (a+b)² = a²+2ab+b²
On adding (2)&(4)
sin² θ + sin² ϕ + 2 sin θ sin ϕ + cos² θ + cos² ϕ + 2 cos θ cos ϕ = a²+b²
=> (sin² θ + cos² θ) + (sin² ϕ + cos² ϕ) + 2 sin θ sin ϕ + 2 cos θ cos ϕ = a²+b²
=> 1+1+2sin θ sin ϕ+ 2 cos θ cos ϕ = a²+b²
=> 2+2sin θ sin ϕ+ 2 cos θ cos ϕ = a²+b²
=> 2+2(sin θ sin ϕ+ cos θ cos ϕ ) = a²+b²
=> 2+2[ cos (θ -ϕ)] = a²+b²
Since,cos(A-B)=cos A cos B+sin A sin B
=> 2[ 1 + {cos (θ -ϕ)} ] = a²+b²
=> 1 + {cos (θ -ϕ)} = (a²+b²)/2
=> 2 cos² (θ -ϕ)/2 = (a²+b²)/2
=> cos² (θ -ϕ)/2 = (a²+b²)/(2×2)
=> cos² (θ -ϕ)/2 = (a²+b²)/4 -------(5)
We know that
tan (θ -ϕ)/2 = √[{1-cos²(θ -ϕ)/2 }/(cos²(θ -ϕ)/2 )]
=> tan (θ -ϕ)/2
=> √[{1-(a²+b²)/4}/{(a²+b²)/4}]
=> √[{4-(a²+b²)/4}/{(a²+b²)/4}]
=> √[{(4-a²-b²)/4}/{(a²+b²)/4}]
=> √[{(4-a²-b²)/4}×{4/(a²+b²)}]
=> √(4-a²-b²)/(a²+b²)
Therefore,
tan (θ -ϕ)/2 = √(4-a²-b²)/(a²+b²)
Answer :-
The value of tan (θ -ϕ)/2 =
√(4-a²-b²)/(a²+b²)
Used formulae:-
→ (a+b)² = a²+2ab+b²
→ cos (A-B) = cos A cos B + sin A sin B
→ tan (A-B)/2
= √[{(1-cos²(A-B)/2}/{cos²(A-B)/2}]
Given that
(1)
On squaring both sides then
sin 8-sin-a
(sin e + sin )² = 8²
→sin¹ etsin² + 2 sin 8 sin =a² (2) Since (a+b)=a+2ab+b²
And
cos 8 + cos = b (3)
On squaring both sides then
cos² 0+cos³ p+2 cos e cos=b²-(4)
Since, (a+b)² = a¹+2ab+b²
On adding (2)S(4)
sin² 0+s
+ sin² + 2 sin 8 sin + cos² 0+
cos² + 2 cos e cos=a²+b²
→ (sin e + cos² e) + (sin²+ cos² ) - 2
sin e sin + 2 cos e cos = a +b² →> 1+1+2sin 8 sin + 2 cos e cos=a²+b²
→> 2+2sin 8 sin + 2 cos 8 cos=a²+b²
→> 2+2(sin 8 sin + cos 8 cos ) =a²+b² → 2+2[ cos (8-0)]=a²+b³
Since.cos(A-B)-cos A cos B+sin A sin B 2[1+ (cos (9-))]=a²+b²
1+ (cos (0-0)) = (a+b)/2
>>2 cas² (8-0)/2 = (a²+b³/2
>>cos² (8-0)/2 = (a+b)/(2*2)
>cos² (8-b/2 = (a+b)/4 (5)
We know that
tan (e-p)/2 = √(1-cos³(0-0)/2 1/(cos(8
→> v[[4-(a+b)/43/[(a+b)/4]] => [(4-a²-b³)/4)/((a+b)/4]]
→ √(4-a³-b³/(a+b)
Therefore,
tan (0-0)/2-(4-a²-b³)/(a+b)
Answer :
The value of tan (9-b)/2 =
√(4-a²-b³)/(a+b) Used formulae:
(a+b)²=a²+2ab+b²
- cos (A-B) = cos A cos B+ sin A sin B
-tan (A-B)/2
= [[(1-cos (A-B)/2}/{cos (A-B)/2]]