Math, asked by Anonymous, 5 months ago

if \sf A = \left[ \begin{array}{cc} 1 & \sf tan\:x\\\sf -tan\: x & \sf 1 \end{array}\right]

then find \rm A^T A^{-1}

Answers

Answered by Anonymous
29

\large{\text{\underline{\rm{Given :}}}

\sf{A}=\left[\begin{array}{cc}1&\sf{tanx}\\\sf{-tanx}&5\end{array}\right]

\large{\text{\underline{\rm{To Find :}}}}

\bf A^TA^{-1}}

\large{\text{\underline{\rm{Solution :}}}}

\bf A= \left[\begin{array}{cc}1&\sf tanx\\\sf -tanx&1\end{array}\right]

\bf A^T = \left[\begin{array}{ccc}1&\sf-tanx \\\sf tanx&1\end{array}\right]

\bf A^{-1}=\frac{1}{|A|}adjA

\bf{|A|}=(1)(1)-((\sf -tanx)(tanx))\implies(1)-(-tan^2x)

\bf{|A|}=\sf1+tan^2x \neq 0

\because \bf{A} \sf \:\:is\:\: invertible

\text{Let's have  $C_{ij}$ as a co-factor of $ a_{ij}$}

C_{11}=(-1)^{1+1}\:(1)\implies(-1)^2(1)\implies 1

C_{12} = (-1)^{1+2} \:\: \sf{(tanx)}\implies (-1)^3\:\sf{(tanx)}\implies \sf -tanx

C_{21}=(-1)^{2+1}(\sf -tanx)\implies(-1)(\sf -tanx) \implies \sf tanx

C_{22}= (-1)^{2+2}(1)\implies (-1)^4(1)\implies 1

\bf{ adjA}=\left[\begin{array}{ccc}1&\sf-tanx\\\sf tanx&1\end{array}\right]

\bf A^{-1}=(\frac{1}{\sf 1+tan^2x})\left[\begin{array}{cc}1&\sf-tanx\\\sf tanx&1\end{array}\right]

\bf A^{-1}=\large{\left[\begin{array}{ccc}\sf\frac{1}{1+tan^2x}&\frac{\sf -tanx}{\sf 1+tan^2x}\\\frac{\sf tanx}{\sf 1+tan^2x}&\frac{1}{\sf 1+tan^2x}\end{array}\right] }

\bf{ A^TA^{-1}}=\left[\begin{array}{ccc}1&\sf -tanx\\\sf tanx &1\end{array}\right]\times\large{\left[\begin{array}{ccc}\sf\frac{1}{1+tan^2x}&\frac{\sf -tanx}{\sf 1+tan^2x}\\\frac{\sf tanx}{\sf 1+tan^2x}&\frac{1}{\sf 1+tan^2x}\end{array}\right] }

\bf{ A^TA^{-1}}=\large{\left[\begin{array}{ccc}(\frac{1}{\sf 1+tan^2x}-\frac{\sf tan^2x}{\sf 1+tan^2x})&(\frac{\sf -tanx}{\sf 1+tan^2x}-\frac{\sf tanx}{\sf 1+tan^2x})\\(\frac{\sf tanx}{\sf 1+tan^2x}+\frac{\sf tanx}{\sf 1+tan^2x}) &(\frac{1}{\sf 1+tan^2x}-\frac{\sf tan^2x}{\sf 1+tan^2x})\end{array}\right]}

\bf{ A^TA^{-1}}=\large {\left[\begin{array}{ccc}\frac{\sf 1-tan^2x}{\sf1+tan^2x}&\frac{\sf-2\:tanx}{\sf 1+tan^2x}\\\frac{\sf 2\:tanx}{\sf 1+tan^2x}&\frac{\sf 1-tan^2x}{\sf1+tan^2x}\end{array}\right] }

\bf{ A^TA^{-1}}=\large{\left[\begin{array}{ccc}\frac{1-\frac{\sf sin^2x}{\sf cos^2x}}{1+\frac{\sf sin^2x}{\sf cos^2x}}&\frac{-2\times \frac{\sf sinx}{\sf cosx }}{1+\frac{\sf sin^2x}{\sf cos^2x}}\\\frac{2\times \frac{\sf sinx}{\sf cosx }}{1+\frac{\sf sin^2x}{\sf cos^2x}} &\frac{1-\frac{\sf sin^2x}{\sf cos^2x}}{1+\frac{\sf sin^2x}{\sf cos^2x}}\end{array}\right]}

\bf{ A^TA^{-1}}=\large{\left[\begin{array}{ccc}\frac{\frac{\sf cos^2x-sin^2x}{\sf cos^2x}}{\frac{\sf cos^2x+sin^2x}{\sf cos^2x}}&\frac{-2 \times \frac{\sf sinx}{\sf cosx}}{\frac{\sf cos^2x+sin^2x}{\sf cos^2x}}\\\frac{2 \times \frac{\sf sinx}{\sf cosx}}{\frac{\sf cos^2x+sin^2x}{\sf cos^2x}}&\frac{\frac{\sf cos^2x-sin^2x}{\sf cos^2x}}{\frac{\sf cos^2x+sin^2x}{\sf cos^2x}}\end{array}\right]}

\bf{ A^TA^{-1}} = \large{ \left[\begin{array}{ccc}\frac{\sf cos^2x-sin^2x}{\sf cos^2x+sin^2x}&\frac{-2\times \frac{\sf sinx}{\sf cosx }}{\frac {1}{\sf cos^2x}}\\\frac{2\times \frac{\sf sinx}{\sf cosx }}{\frac {1}{\sf cos^2x}}&\frac{\sf cos^2x-sin^2x}{\sf cos^2x+sin^2x}\end{array}\right]}

\color{deeppink}{\sf (\:\:\:\: \because sin^2+cos^2=1\:)}

\bf{ A^TA^{-1}} = \left[\begin{array}{ccc}\frac{\sf cos\:2x}{1}&(-2\frac{\sf sinx}{\sf cosx}\times \sf cos^2x)\\(2\frac{\sf sinx}{\sf cosx}\times \sf cos^2x)&\frac {\sf cos\:2x}{1}\end{array}\right]

\color{deeppink}{\sf (\:\:\: \because cos^2x-sin^2x=cos2x)}

\bf{ A^TA^{-1}} = \left[\begin{array}{ccc}\sf cos\:2x&\sf -2\:sinx\:cosx\\\sf 2\:sinx\:cosx&\sf cos\:2x\end{array}\right]

\color {deeppink}{\sf (\:\: \because\:\:2\:sinx\:cosx=sin\:2x)}

\bf{ A^TA^{-1}} = \left[\begin{array}{ccc}\sf cos\:2x&\sf -sin\:2x \\\sf sin\:2x&\sf cos\:2x\end{array}\right]

Similar questions