Math, asked by Anonymous, 1 month ago

If \sf{(\frac{x}{3} + 1,y -  \frac{2}{3})  = ( \frac{5}{3},  \frac{1}{3}) }, find the values of x and y.

Answers

Answered by sneha1126
33

It is given that

 \sf{(\frac{x}{3} + 1,y - \frac{2}{3}) = ( \frac{5}{3}, \frac{1}{3}) }(3x+1,y−32)=(35,31)

Since the ordered pairs are equal the corresponding element will also be equal

Therefore

 \frac{x}{3} + 1 =   \frac{5}{3}  \: and  \: y -  \frac{2}{3} = \frac{1}{3}

⇒y=1

\frac{x}{3} + 1 = \frac{5}{3}

⇒x=2

∴x=2 and y=1

Answered by Kokkiearmy
42

\huge\color{pink}\boxed{\colorbox{Black}{❥ Answer}}

Given ,

( \frac{x}{3}  + 1.y -  \frac{2}{3})  = ( \frac{1}{5} . \frac{1}{3} (3x + 1.y - 32) - 3

The element must be equal ,

So ,

  = \frac{x}{3}  + 1 =  \frac{5}{3}  \\  = y -  \frac{2}{3}  =  \frac{1}{3}

Therefore y = 1

 \frac{x}{3}  + 1 =  \frac{5}{3}

X = 2

So , The value of y = 1 and x = 2 .

Hope it will help you Blink

Similar questions