Math, asked by Anonymous, 7 months ago

If \sf y = \dfrac{xcos^{-1}x}{\sqrt{1 - x^2}} - log(\sqrt{1 - x^2}) , then show that \sf \dfrac{dy}{dx} = \dfrac{cos^{-1}x}{(1-x^2)^{\frac{3}{2}}}

Continuity and Differentiability, Class 12 ​

Answers

Answered by EnchantedGirl
101

REFER TO THE ATTACHMENT!

HOPE IT HELPS :)

Attachments:

Anonymous: Thank you!
Answered by BrainlyPopularman
128

GIVEN :

 \\ \implies \bf y = \dfrac{xcos^{-1}x}{\sqrt{1 - x^2}} - log(\sqrt{1 - x^2}) \\

TO PROVE :

 \\  \implies\bf \dfrac{dy}{dx} = \dfrac{cos^{-1}x}{(1-x^2)^{\frac{3}{2}}} \\

SOLUTION :

 \\ \implies \bf y = \dfrac{xcos^{-1}x}{\sqrt{1 - x^2}} - log(\sqrt{1 - x^2}) \\

• We should write this as –

 \\ \implies \bf y = \dfrac{xcos^{-1}x}{\sqrt{1 - x^2}} - log( \{1 - x^2 \}^{ \frac{1}{2} } ) \\

 \\ \implies \bf y = \dfrac{xcos^{-1}x}{\sqrt{1 - x^2}} - \dfrac{1}{2}  log(1 - x^2) \:  \:  \:  \:  \:  \:  \:  \:  \: [ \: \because \:  \:  log( {a}^{b} ) = b log(a)  ] \\

 \\ \implies \bf y =cos^{-1}x. \left( \dfrac{x}{\sqrt{1 - x^2}}  \right)- \dfrac{1}{2}  log(1 - x^2)\\

• Now Differentiate with respect to 'x' –

 \\ \implies \bf  \dfrac{dy}{dx}  = \dfrac{d}{dx}  \left\{ cos^{-1}x. \left( \dfrac{x}{\sqrt{1 - x^2}}  \right) \right \} - \dfrac{1}{2} \dfrac{d}{dx} \left \{ log(1 - x^2)  \right\}\\

• Using identity –

 \\ \implies \bf  \dfrac{d(u.v)}{dx}  = u \frac{dv}{dx} + v \frac{du}{dx}  \\

• And –

 \\ \implies \bf  \dfrac{d \left( \dfrac{u}{v} \right)}{dx}  =  \dfrac{v \dfrac{du}{dx} - u \dfrac{dv}{dx}  }{ {v}^{2} }   \\

• So that –

 \\ \implies \bf  \dfrac{dy}{dx} =cos^{-1}x .\frac{d}{dx} \left( \dfrac{x}{\sqrt{1 - x^2}}  \right) + \left( \dfrac{x}{\sqrt{1 - x^2}}  \right). \dfrac{d}{dx}(cos^{-1}x) - \dfrac{1}{2} \dfrac{d}{dx}  log(1 - x^2)\\

 \\ \implies \bf  \dfrac{dy}{dx} =cos^{-1}x  \left( \dfrac{ \sqrt{1 -  {x}^{2} }  - x \left( \dfrac{ - 2x}{2 \sqrt{1 -  {x}^{2} } }  \right)}{ \{\sqrt{1 - x^2} \}^{2} }  \right) + \left( \dfrac{x}{\sqrt{1 - x^2}}  \right). \left( \dfrac{ - 1}{\sqrt{1 - x^2}}  \right) - \dfrac{1}{2} \dfrac{( - 2x)}{(1 - x^2)}\\

 \\ \implies \bf  \dfrac{dy}{dx} =cos^{-1}x  \left( \dfrac{ \sqrt{1 -  {x}^{2} }   + x \left( \dfrac{x}{\sqrt{1 -  {x}^{2} } }  \right)}{1 - x^2}\right) + \left( \dfrac{ - x}{1 - x^2}\right) + \dfrac{( x)}{(1 - x^2)}\\

 \\ \implies \bf  \dfrac{dy}{dx} =cos^{-1}x  \left( \dfrac{ \dfrac{ {( \sqrt{1 -  {x}^{2} } )}^{2} +  {x}^{2}  }{ \sqrt{1 -  {x}^{2} } } }{1 - x^2}\right) + \left( \dfrac{0}{1 - x^2}\right) \\

 \\ \implies \bf  \dfrac{dy}{dx} =cos^{-1}x  \left( \dfrac{ \dfrac{ {1 -  {x}^{2} }+  {x}^{2}}{ \sqrt{1 -  {x}^{2} } } }{1 - x^2}\right) + 0 \\

 \\ \implies \bf  \dfrac{dy}{dx} =cos^{-1}x  \left( \dfrac{1}{(1 - x^2 )\sqrt{1 -  {x}^{2} } }\right)  \\

 \\ \implies \bf  \dfrac{dy}{dx} =cos^{-1}x  \left( \dfrac{1}{(1 - x^2 )^{ \frac{3}{2} } }\right)  \\

 \\ \implies \bf  \dfrac{dy}{dx}  =\dfrac{cos^{-1}x}{(1 - x^2 )^{ \frac{3}{2} } }\\

 \\ \bf \:\:\: {\underline {\underline { \bf Hence \:\: Proved }}\\


Anonymous: Thank you!
mddilshad11ab: Awesome ❤️
BrainlyPopularman: Thanks :)
Similar questions