Math, asked by madhav5245, 19 days ago

If

 {sin}^{ - 1}x +  {tan}^{ - 1}x =  \frac{\pi}{2} \\ find \: the \: value \: of \:  {2x}^{2}  + 1
Explain the complete with steps

Answers

Answered by mathdude500
26

\large\underline{\sf{Solution-}}

Given that,

\rm \:  {sin}^{ - 1}x +  {tan}^{ - 1}x = \dfrac{\pi}{2}

Now,

Let we assume that

\rm \: {sin}^{ - 1}x = y

\rm \: x = siny

\rm \:  {x}^{2}  =  {sin}^{2}y

\rm \:  {x}^{2}  = 1 -  {cos}^{2}y

\rm \:{cos}^{2}y = 1 -  {x}^{2}

\rm \:{sec}^{2}y = \dfrac{1}{1 - {x}^{2} }

\rm \:1 + {tan}^{2}y = \dfrac{1}{1 - {x}^{2} }

\rm \: {tan}^{2}y = \dfrac{1}{1 - {x}^{2} } - 1

\rm \: {tan}^{2}y = \dfrac{1 - 1 +  {x}^{2} }{1 - {x}^{2} }

\rm \: {tan}^{2}y = \dfrac{{x}^{2} }{1 - {x}^{2} }

\rm\implies \:tany = \dfrac{x}{ \sqrt{1 -  {x}^{2} } }

\rm\implies \:y = {tan}^{ - 1}\dfrac{x}{ \sqrt{1 -  {x}^{2} } }

\rm\implies \:{sin}^{ - 1}x = {tan}^{ - 1}\dfrac{x}{ \sqrt{1 -  {x}^{2} } }

So, given equation,

\rm \:  {sin}^{ - 1}x +  {tan}^{ - 1}x = \dfrac{\pi}{2}

can be rewritten as

\rm \:  {tan}^{ - 1}\dfrac{x}{ \sqrt{1 -  {x}^{2} } }  +  {tan}^{ - 1}x = \dfrac{\pi}{2}

\rm \:  {tan}^{ - 1}\dfrac{x}{ \sqrt{1 -  {x}^{2} } } = \dfrac{\pi}{2} - {tan}^{ - 1}x

\rm \:  {tan}^{ - 1}\dfrac{x}{ \sqrt{1 -  {x}^{2} } } = {cot}^{ - 1}x

\rm \:  {tan}^{ - 1}\dfrac{x}{ \sqrt{1 -  {x}^{2} } } = {tan}^{ - 1}\dfrac{1}{x}

\rm \:\dfrac{x}{ \sqrt{1 -  {x}^{2} } } = \dfrac{1}{x}

\rm \:  {x}^{2} =  \sqrt{1 -  {x}^{2} }

On squaring both sides, we get

\rm \:  {x}^{4} = 1 -  {x}^{2}

\rm \:  {x}^{4} + {x}^{2} - 1 = 0

So, by using Quadratic formula, we get

\rm \:  {x}^{2} = \dfrac{ - 1 \:  \pm \:  \sqrt{ {1}^{2}  - 4(1)( - 1)} }{2}

\rm \:  {x}^{2} = \dfrac{ - 1 \:  \pm \:  \sqrt{ 1 + 4} }{2}

\rm \:  {x}^{2} = \dfrac{ - 1 \:  \pm \:  \sqrt{5} }{2}

\rm \:  {x}^{2} = \dfrac{ - 1 \: +  \:  \sqrt{5} }{2}  \:  \: or \:  \:  {x}^{2} =  \dfrac{ - 1 \: -  \:  \sqrt{5} }{2} \{rejected \: as \:  {x}^{2} \cancel{ < }0 \}

\rm\implies \:\rm \:  {x}^{2} = \dfrac{ \sqrt{5} \:  -  \: 1 }{2}

So, Now Consider

\rm \:  {2x}^{2} + 1

\rm \:  =  \: 2 \times  \dfrac{\sqrt{5}  - 1}{2}  + 1

\rm \:  =  \:  \sqrt{5} - 1   + 1

\rm \:  =  \:  \sqrt{5}

Hence,

\rm\implies \: \: \boxed{\tt{  \:  {2x}^{2} + 1 =  \sqrt{5}  \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\rm \: {sin}^{ - 1}x + {cos}^{ - 1}x = \dfrac{\pi}{2}  \:  \:  \:  \:  \forall \: x \:  \in \: [ - 1,1] \\

\rm \: {sec}^{ - 1}x + {cosec}^{ - 1}x = \dfrac{\pi}{2}  \:  \:  \:  \:  \forall \: x \:  \in \: R - ( - 1,1) \\

\rm \: {tan}^{ - 1}x + {cot}^{ - 1}x = \dfrac{\pi}{2}  \:  \:  \:  \:  \forall \: x \:  \in \: R \\

Similar questions