Math, asked by Anonymous, 2 months ago

if
 sin(a)  + cosec(a)  = 2
then find the value of
 sin {8} (a)  + cosec {8} (a)

Answers

Answered by linirajesh2011
2

Answer:

sinθ+cosecθ=2

We know that, cosecθ=

sinθ

1

sinθ+

sinθ

1

=2

sin

2

θ−2sinθ+1=0

(sinθ−1)

2

=0

(sinθ−1)=0

sinθ=1

sinθ=sin90

θ=90

Now, find the value.

sin

8

θ+cosec

8

θ=(sinθ)

8

+(cosecθ)

8

=(sin90)

8

+(cosec90)

8

=(1)

8

+(1)

8

=1+1

=2

sin

8

θ+cosec

8

θ=2

Hence, the required result is found.

Answered by Anonymous
182

 \huge \rm {\underbrace{\underline{Answer:-}}}

 \sf \red {\underline{\underline{Provided\: that:}}}

 \to \tt {Sin\:a+cosec\:a=2}

 \sf \blue {\underline{\underline{To\: Determine:}}}

 \to \tt {sin^{8} \:a + cosec^{8} \:a=?}

➻Firstly,we need to calculate the value of 'a'

 \sf \pink {\underline{\underline{We\: know:}}}

\large \to \tt {cosec\:a=\frac{1}{sin\:a}}

➻so we can write,

\large \to \tt {Sin\:a+cosec\:a=2}

➻As ,

 \to \tt {Sin\:a+\frac{1}{sin\:a}=2}

➻ Taking L.C.M,

\large \to \tt {\frac{sin\:a\times sin\:a+1}{sin(a)}=2}

\large \to \tt {\frac{sin^{2}\:a+1}{sin\:a}=2}

 \to \tt {sin^{2}\:a+1=2sin\:a}

 \to \tt {sin^{2}\:a-2sin\:a+1=0}

➻It is in the form of  \tt {a^{2}-2ab+b^{2}=(a-b)^{2}}

➻where ,

 \to \tt {a=sin\:a}

 \to \tt {b=1}

➻so it can be written as  \tt {(a-b)^{2}}

 \to \tt {(sin\:a-1)^{2}=0}

 \to \tt {sin\:a=1}

 \to \tt {sin\:a=sin90°} [∵sin90°=1]

 \to \tt {\cancel{sin}\:a=\cancel{sin}90°}

 \implies \green {\fbox{a=90°}}

➻As the value of 'a' is determined,

 \to \tt {sin^{8} \:a + cosec^{8} \:a}

 \to \tt {(sin \:a )^{8}+ (cosec \:a)^{8}}

➻Substituting the value of 'a'

 \to \tt {(sin90° )^{8}+ (cosec 90°)^{8}}

 \to \tt {(1)^{8}+ (1)^{8}}

[∵sin90°=1 and cosec90°=1]

 \to \tt {1+1}

\large \implies \green {\fbox{2}}

 \sf \purple {\underline{\underline{Henceforth,}}}

➻The required Answer is "2"


mddilshad11ab: Great¶
Similar questions