Math, asked by SharmaShivam, 1 year ago

If \sin\alpha \sin\beta-\cos\alpha \cos\beta+1=0 , then prove that 1+\tan\beta \cot\alpha=0

Answers

Answered by Crystall91
3

Given,

LHS:-

 \sin \alpha  \sin \beta  -  \cos  \alpha  \cos \beta  + 1 = 0

 \sin \alpha  \sin \beta - \cos \alpha   \cos \beta  =  - 1

 - (  \cos \alpha  \cos \beta  -  \sin \alpha  \sin \beta ) =  - 1

 \cos \alpha  \cos \beta  -  \sin \alpha  \sin \beta  = 1

 \cos( \alpha  +  \beta )  = 1

Now

To prove:-

RHS:-

1 +  \tan \alpha   \cot \beta  = 0

1 +  \frac{ \tan\beta  }{ \tan\alpha }  = 0

 \frac{ \tan \alpha  +  \tan\beta   }{ \tan \alpha  }  = 0

 \tan \alpha  +  \tan \beta   = 0

 \frac{ \sin \alpha  }{ \ \cos  \ \alpha   }  + \frac{ \sin \beta }{ \cos\beta  }  = 0

 \frac{ \sin\alpha  \cos \beta  +  \cos \alpha  \sin \beta    ) }{ \cos\alpha  \cos\beta  } = 0

sin(a+ß) = 0.....(i)

Now,

let (a+ß) = x

we know,

sin²x+cos²x = 1

0+cos²x = 1 {from ep(i)}

cosx = 1

that is cos(a+ß) = 1 which I proved in LHS section.

Hence proved, LHS = RHS.

Cheers!

Answered by rahman786khalilu
3

hence proved hope it helps

Attachments:
Similar questions