Math, asked by darshan4097, 10 months ago

If
 \sqrt{19 - 4  \sqrt{x} }    =  \sqrt{12}  -  \sqrt{7}
then value of x is?​

Answers

Answered by Abhishek474241
6

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • An Equation in one variable
  • \tt \sqrt{19 - 4 \sqrt{x} } = \sqrt{12} - \sqrt{7}

{\sf{\green{\underline{\large{To\:find}}}}}

  • Value of x

{\sf{\pink{\underline{\Large{Explanation}}}}}

\tt \sqrt{19 - 4 \sqrt{x} } = \sqrt{12} - \sqrt{7}

Both side squaring

______________________

\tt (\sqrt{19 - 4 \sqrt{x} } )^2=( \sqrt{12} - \sqrt{7} )^2

\tt\implies(\sqrt{19 - 4 \sqrt{x} } )^2=( \sqrt{12} - \sqrt{7} )^2

\tt\implies{19 - 4 \sqrt{x}} =12+7+2\times \sqrt{12}\times\sqrt{7}

\tt\implies{19-4\sqrt{x}} =19+2\times\sqrt{12}\times\sqrt{7}

\tt\implies{\cancel{19}-4\sqrt{x}} =\cancel{19}+2\times\sqrt{12}\times\sqrt{7}

\tt\implies{-4\sqrt{x}} =+2\times\sqrt{84}

\tt\implies({-4\sqrt{x}})^2=+(2\times\sqrt{84})^2

\tt\implies{16x}=4\times84

\tt\implies{x}=\cancel{\frac{4\times84}{\cancel{16}}}

\tt\therefore{X}=21

______________________

Answered by ravi26sankar
2

Answer:

I think this will help you

Attachments:
Similar questions