Math, asked by sonipratham, 9 months ago

if\sqrt{x} +\sqrt{x-\sqrt{1-x}}=1 then the value of x is

Answers

Answered by Anonymous
203

Answer:

→ \:x =  \dfrac{16}{25}

Step-by-step explanation:

→ \:\sqrt{x}   \:  +  \:  \sqrt{x -  \sqrt{1 - x} }  \:  = \: 1 \\  \\ → \:\sqrt{x -  \sqrt{1 - x} }  \:  = \: 1 -  \sqrt{x }  \\  \\ {\Large{Squaring \: On \: Both \: Sides}} \\  \\  →\: \bigg(  \:  \: \sqrt{x -  \sqrt{1 - x} }  \:  \:  \:  \:   \bigg){\large{^{^{2}}}}  \:  =  \: ( \: 1 -  \sqrt{x}  \: ) {}^{2}  \\  \\ →\: x \:  -  \:  \sqrt{1 - x}  \:  =  \: 1 \:  +  \: x \:  -  \: 2 \sqrt{x}  \\  \\→\:  -  \sqrt{1 - x}  \:  =  \: 1 \:  -  \: 2 \sqrt{x}  \\  \\→\: ( \:  -  \sqrt{1 - x}  \: ) {}^{2}  \:  =  \: ( \: 1 - 2 \sqrt{x} \: ) {}^{2}   \\  \\→\: 1 \:  -  \: x \:  =  \: 1 \:  +  \: 4x \:  -  \: 4 \sqrt{x}  \\  \\→\: 4 \sqrt{x }  \:  =  \: 5x \\  \\→\: (4 \sqrt{x} ) {}^{2}  \:  =  \: (5x) {}^{2}  \\  \\→\: 16 \: . \: x \:  =  \: 25 \: x {}^{2}  \\  \\→\: x \:  =  \:  \dfrac{16}{25}

ᴘʟᴇᴀsᴇ ᴍᴀʀᴋ ᴍᴇ ᴀs ʙʀᴀɪɴʟɪᴇsᴛ ❤️

Answered by vzsgegeeggedg
0

Answer:

x =  \dfrac{16}{25}

Step-by-step explanation:

refer the above answer and don't mark me as brainliest

Similar questions