If , then a is equal to
(a)
(b)
(c)
(d)
Answers
Answered by
7
SOLUTION :
The correct option is (a) : (a² + b²) / (a² - b²).
Given : tan θ = a/b
In right angle ∆ ,
tan θ = perpendicular/base = a/b
perpendicular = a , base = b
Hypotenuse = √( perpendicular)² + (Base)²
[By Pythagoras theorem]
Hypotenuse = √ a² + b² = √a² + b²
Hypotenuse = √a² + b²
sinθ = perpendicular/hypotenuse = a/ √a² + b²
cos θ = base/ hypotenuse = b/ √a² + b²
The value of (a sin θ + b cos θ ) / (a sin θ - b cos θ ) :
= [a(a/ √a² + b²) + b(b/ √a² + b²)] / [a(a/ √a² + b²) - b(b/ √a² + b²)]
= (a² + b² / a² + b² ) / (a² - b² / a² + b²)
= (a² + b² / a² + b² ) × (a² + b²) / (a² - b²)
(a sin θ + b cos θ ) / (a sin θ - b cos θ ) = (a² + b²) / (a² - b²)
Hence, the value of (a sin θ + b cos θ ) / (a sin θ - b cos θ ) is (a² + b²) / (a² - b²).
HOPE THIS ANSWER WILL HELP YOU…
Answered by
4
The correct option is a.
Similar questions