Math, asked by NITESH761, 1 month ago

if  \tt acos^3 θ+3acos\: θ\: sin^2 θ=m and  \tt asin^3 θ+3acos^2 θ \: sin\: θ=n
then prove that,
\tt (m+n)^{\frac{2}{3}} + (m-n)^{\frac{2}{3}}=2a^{\frac{2}{3}}

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:a {cos}^{3}\theta  + 3acos\theta \: {sin}^{2}\theta  = m

and

\rm :\longmapsto\:a {sin}^{3}\theta  + 3asin\theta \: {cos}^{2}\theta  = n

Now, Consider

\rm :\longmapsto\:m + n

\rm \:  =  \: a {cos}^{3}\theta  + 3acos\theta \: {sin}^{2}\theta + a {sin}^{3}\theta  + 3asin\theta \: {cos}^{2}\theta

\rm \:  =  \: a \bigg[{cos}^{3}\theta  + 3cos\theta \: {sin}^{2}\theta + {sin}^{3}\theta  + 3sin\theta \: {cos}^{2}\theta\bigg]

can be rewritten as

\rm \:  =  \: a \bigg[{cos}^{3}\theta  + 3cos\theta \: {sin}^{2}\theta + 3cos\theta \: {sin}^{2}\theta +  {cos}^{3} \theta \bigg]

We know,

\boxed{ \tt{ \:  {x}^{3} +  {3x}^{2}y +  {3xy}^{2} +  {y}^{3} =  {(x + y)}^{3} \: }}

So, using this identity, we get

\rm \:  =  \: a {(cos\theta  + sin\theta )}^{3}

\rm \implies\:m + n  =  \: a {(cos\theta  + sin\theta )}^{3}

So,

\rm :\longmapsto\: {\bigg(m + n \bigg) }^{\dfrac{2}{3} }

\rm \:  =  \:  {\bigg(a {(cos\theta  + sin\theta )}^{3}  \bigg) }^{\dfrac{2}{3} }

\rm \:  =  \:  {\bigg(a\bigg) }^{\dfrac{2}{3} } {(cos\theta  + sin\theta )}^{2}

\rm \implies\:\boxed{ \tt{ \: {\bigg(m + n \bigg) }^{\dfrac{2}{3} } = {\bigg(a\bigg) }^{\dfrac{2}{3} } {(cos\theta  + sin\theta )}^{2} \: }}

Now, Consider

\rm :\longmapsto\:m - n

\rm \:  =  \: a {cos}^{3}\theta  + 3acos\theta \: {sin}^{2}\theta  -  a {sin}^{3}\theta   -  3asin\theta \: {cos}^{2}\theta

\rm \:  =  \: a \bigg[{cos}^{3}\theta  + 3cos\theta \: {sin}^{2}\theta  -  {sin}^{3}\theta  - 3sin\theta \: {cos}^{2}\theta\bigg]

can be rewritten as

\rm \:  =  \: a \bigg[{cos}^{3}\theta  + 3cos\theta \: {sin}^{2}\theta  -  3sin\theta \: {cos}^{2}\theta -{sin}^{3} \theta \bigg]

\rm \:  =  \: a {(cos\theta  - sin\theta )}^{3}

\rm \implies\:m  -  n  =  \: a {(cos\theta   - sin\theta )}^{3}

So,

\rm :\longmapsto\: {\bigg(m  -  n \bigg) }^{\dfrac{2}{3} }

\rm \:  =  \:  {\bigg(a {(cos\theta  -  sin\theta )}^{3}  \bigg) }^{\dfrac{2}{3} }

\rm \:  =  \:  {\bigg(a\bigg) }^{\dfrac{2}{3} } {(cos\theta -  sin\theta )}^{2}

\rm \implies\:\boxed{ \tt{ \: {\bigg(m  -  n \bigg) }^{\dfrac{2}{3} } = {\bigg(a\bigg) }^{\dfrac{2}{3} } {(cos\theta - sin\theta )}^{2} \: }}

Now, Consider

\red{\rm :\longmapsto\:{\bigg(m + n \bigg) }^{\dfrac{2}{3} } + {\bigg(m  -  n \bigg) }^{\dfrac{2}{3} }}

On substituting the values, evaluated above, we get

\rm \:  =  \: {\bigg(a\bigg) }^{\dfrac{2}{3} } {(cos\theta  + sin\theta )}^{2} + {\bigg(a\bigg) }^{\dfrac{2}{3} } {(cos\theta  -  sin\theta )}^{2}

\rm \:  =  \: {\bigg(a\bigg) }^{\dfrac{2}{3} } \bigg[{(cos\theta  + sin\theta )}^{2} +  {(cos\theta  -  sin\theta )}^{2}\bigg]

We know

\boxed{ \tt{ \:  {(x + y)}^{2} +  {(x - y)}^{2}  = 2( {x}^{2} +  {y}^{2}) \: }}

So, using this, we get

\rm \:  =  \: {\bigg(a\bigg) }^{\dfrac{2}{3} } \bigg[2( {cos}^{2}\theta  +  {sin}^{2}\theta )  \bigg]

\rm \:  =  \: {\bigg(a\bigg) }^{\dfrac{2}{3} } \bigg[2(1 )  \bigg]

\rm \:  =  \: 2{\bigg(a\bigg) }^{\dfrac{2}{3} }

Hence,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: {\bigg(m + n \bigg) }^{\dfrac{2}{3} } + {\bigg(m  -  n \bigg) }^{\dfrac{2}{3} }} =2 {\bigg(a\bigg) }^{\dfrac{2}{3} } \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions