Math, asked by guptashtakshi808, 11 months ago

if
 {x}^{2}  + 1 \div x = 66 \: find \: the \: value \: of \\ x - 1 \div x

Answers

Answered by Anonymous
3

Given that :

 \frac{ {x}^{2} + 1 }{x} = x +  \frac{1}{x}   = 66

As we know that :

 {(a - b)}^{2}  =  {(a + b)}^{2}  - 4ab

Such as :

 {(x -  \frac{1}{x} )}^{2}  =  {(x +  \frac{1}{x} )}^{2}  - 4 \times x \times  \frac{1}{x}  \\  \\  =  >  {(x -  \frac{1}{x} )}^{2}  =  {(66)}^{2}  - 4 \\  \\  =  >  {(x -  \frac{1}{x}) }^{2}  = 4356 - 4 = 4352 \\  \\  =  > x -  \frac{1}{x}  = 65.9 = 66 \: (approx)

@ItsChampion ✌️

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Solution-} \\

 \sf{ {x}^{2}  + \frac{1}{ {x}^{2} }   = 66} \\

 \bf \underline{To find-} \\

 \sf{the \: value \: of  :\: x -  \frac{1}{x}  = \:  ?} \\

 \bf \underline{Solution-} \\

  \sf {\bigg(x -  \frac{1}{x}  \bigg) ^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2}  }   - 2 \:  \:  \: \:  \:  \:    [ \because \: (a - b {)}^{2}  =  {a}^{2} +  {b}^{2}  - 2ab ]} \\  \\  = 66 - 2 \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \: \: \: \: \:\rm{ [ \because {x}^{2}   +  \frac{1}{ {x}^{2}} = 66 \:(Given)  ]  } \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \: \: \: \:= 64 \\

 \sf{ \therefore \:  \:  \:  \:  \:  \: x -  \frac{1}{x} =  \sqrt{64} } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = ± \: 8 \\

 \bf\underline{Hence,the \: value \: of :  \: x -  \frac{1}{x}  \: is  \: ± \: 8.} \\

Similar questions