If
![{x}^{2} + \frac{1}{ {x}^{2} } = 27 {x}^{2} + \frac{1}{ {x}^{2} } = 27](https://tex.z-dn.net/?f=+%7Bx%7D%5E%7B2%7D++%2B++%5Cfrac%7B1%7D%7B+%7Bx%7D%5E%7B2%7D+%7D++%3D+27)
Then find
![x + \frac{1}{x} x + \frac{1}{x}](https://tex.z-dn.net/?f=x+%2B++%5Cfrac%7B1%7D%7Bx%7D+)
Using algebric identities
Answers
Answered by
0
Solution:-
given:-
![{x}^{2} + \frac{1}{ {x}^{2} } = 27 \\ <br />Then find<br /> \\ x + \frac{1}{x} \\( {x + \frac{1}{x} )}^{2} = {x}^{2} + \frac{1}{ {x}^{2} } + 2 \\ ( {x + \frac{1}{x} )}^{2} = 27 + 2 \\ (x + \frac{1}{x} ) = \sqrt{29} ans {x}^{2} + \frac{1}{ {x}^{2} } = 27 \\ <br />Then find<br /> \\ x + \frac{1}{x} \\( {x + \frac{1}{x} )}^{2} = {x}^{2} + \frac{1}{ {x}^{2} } + 2 \\ ( {x + \frac{1}{x} )}^{2} = 27 + 2 \\ (x + \frac{1}{x} ) = \sqrt{29} ans](https://tex.z-dn.net/?f=+%7Bx%7D%5E%7B2%7D+%2B+%5Cfrac%7B1%7D%7B+%7Bx%7D%5E%7B2%7D+%7D+%3D+27+%5C%5C+%3Cbr+%2F%3EThen+find%3Cbr+%2F%3E+%5C%5C+x+%2B+%5Cfrac%7B1%7D%7Bx%7D++%5C%5C%28++%7Bx+%2B++%5Cfrac%7B1%7D%7Bx%7D+%29%7D%5E%7B2%7D++%3D++%7Bx%7D%5E%7B2%7D++%2B++%5Cfrac%7B1%7D%7B+%7Bx%7D%5E%7B2%7D+%7D++%2B+2+%5C%5C+%28++%7Bx+%2B++%5Cfrac%7B1%7D%7Bx%7D+%29%7D%5E%7B2%7D++%3D+27+%2B+2+%5C%5C+%28x+%2B++%5Cfrac%7B1%7D%7Bx%7D+%29+%3D++%5Csqrt%7B29%7D+ans)
given:-
NickSingh1105:
Can you explain each step?
Similar questions