Math, asked by Aramaan777, 3 months ago

If   \:  {x}^{2}  +  \frac{1}{ {x}^{2} }   \: = \:  27
Then find the value of
 \ \: x -  \frac{1}{x}

Answers

Answered by Anonymous
323

Given :-

  •  \sf \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }   \: = \:  27

To find :-

  •  \sf \: x -  \dfrac{1}{x}

Identity used :

  • ( a+b )² = a² + b² - 2ab

Solution :-

\sf : \implies\red {\:  \: x -  \dfrac{1}{x} }\\\\

\sf \: : \implies \: \bigg( x -  \dfrac{1}{x}  { \bigg)}^{2}\\\\

\sf: \implies \:\bigg( x -  \dfrac{1}{x}  { \bigg)}^{2}   \: =   \: {x}^{2}  \: +  \:  \bigg( \dfrac{1}{x}  { \bigg)}^{2}  \:  -  \:2 \times \bigg( \dfrac{1}{x}  { \bigg)}  \bigg( x \bigg)\\\\

\sf :\implies \: \bigg( x -  \dfrac{1}{x}  { \bigg)}^{2}   \: =  \: {x}^{2}  \: +  \:  \bigg( \dfrac{1}{x}  { \bigg)}^{2}  \:  -  \:2\\\\

As we are given that:-

\red { \bigg[  \: \sf  \:  {x}^{2}  \: +  \:  \bigg( \dfrac{1}{x}  { \bigg)}^{2}  \:   = \:27 \:  \: \bigg]}\\\\

\sf: \implies \: \bigg( x -  \dfrac{1}{x}  { \bigg)}^{2}  \: =   \: {x}^{2}  \: +  \:  \bigg( \dfrac{1}{x}  { \bigg)}^{2}  \:  -  \:2 \:  =  \: 27 - 2\\\\

\sf :\implies \:   \: \bigg( x -  \dfrac{1}{x}  { \bigg)}^{2}  = \:  25\\\\

 \sf: \implies \: \bigg( x -  \dfrac{1}{x}  { \bigg)} \:  =  \sqrt{25}\\\\

 \sf\red { :\implies \: \bigg( x -  \dfrac{1}{x}  { \bigg)} \:  =   \: \pm \: 5}\\\\

Answered by roshni542
42

Step-by-step explanation:

\sf \color{red} ANSWER:-

 \huge  \color{red}\mathtt( x -  \frac{1}{x}) = ±5

\sf \color{red}hope \: its \: helps \: you

Similar questions