If , find the value of
Answers
Answer:-
Therefore,
Cubing the both sides as per the question,
Answer:
Answer:-
x = 2 + \sqrt{3}x=2+3
\frac{1}{x} = \frac{1}{2 + \sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3} }x1=2+31×2−32−3
\frac{1}{x} = \frac{2 - \sqrt{3} }{ {2}^{2} - { \sqrt{3} }^{2} }x1=22−322−3
\frac{1}{x} = \frac{2 - \sqrt{3} }{4 - 3}x1=4−32−3
\tt\bold\red\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: = > \frac{1}{x} = 2 - \sqrt{3} =>x1=2−3
Therefore,
x + \frac{1}{x} = 2 + \sqrt{3} + 2 - \sqrt{3}x+x1=2+3+2−3
x + \frac{1}{x} = 2 + 2x+x1=2+2
\tt\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = > x + \frac{1}{x} = 4 =>x+x1=4
Cubing the both sides as per the question,
{(x + \frac{1}{x}) }^{3} = {4}^{3}(x+x1)3=43
{x}^{3} + \frac{1}{ {x}^{3} } + 3(x + \frac{1}{x}) = 64x3+x31+3(x+x1)=64
{x}^{3} + \frac{1}{ {x}^{3} } + 3 \times 4 = 64x3+x31+3×4=64
{x}^{3} + \frac{1}{ {x}^{3} } + 12 = 64x3+x31+12=64
{x}^{3} + \frac{1}{ {x}^{3} } = 64 - 12x3+x31=64−12
\tt\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = > {x}^{3} + \frac{1}{ {x}^{3} } = 52 =>x3+x31=52