Math, asked by 19373891, 6 months ago

If x = 2 + \sqrt{3} , find the value of  {x}^{3} + \frac{1}{ {x}^{3} }

Answers

Answered by itzshreeja
8

Answer:-

x = 2 +  \sqrt{3}

 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

 \frac{1}{x} =  \frac{2 -  \sqrt{3} }{ {2}^{2}  -   { \sqrt{3} }^{2}  }

 \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{4 - 3}

\tt\bold\red\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: =>\frac{1}{x}  = 2 -  \sqrt{3}

Therefore,

x +  \frac{1}{x}  = 2 +  \sqrt{3}  + 2 -  \sqrt{3}

x +  \frac{1}{x}  = 2 + 2

\tt\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: =>x +  \frac{1}{x}  = 4

Cubing the both sides as per the question,

 {(x +  \frac{1}{x}) }^{3}  =  {4}^{3}

 {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3(x +  \frac{1}{x}) = 64

{x}^{3}  +  \frac{1}{ {x}^{3} } + 3 \times 4 = 64

{x}^{3}  +  \frac{1}{ {x}^{3} } + 12 = 64

{x}^{3}  +  \frac{1}{ {x}^{3} } = 64 - 12

\tt\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: =>{x}^{3}  +  \frac{1}{ {x}^{3} } = 52

Answered by dashmeet70
0

Answer:

Answer:-

x = 2 + \sqrt{3}x=2+3

\frac{1}{x} = \frac{1}{2 + \sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3} }x1=2+31×2−32−3

\frac{1}{x} = \frac{2 - \sqrt{3} }{ {2}^{2} - { \sqrt{3} }^{2} }x1=22−322−3

\frac{1}{x} = \frac{2 - \sqrt{3} }{4 - 3}x1=4−32−3

\tt\bold\red\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: = > \frac{1}{x} = 2 - \sqrt{3} =>x1=2−3

Therefore,

x + \frac{1}{x} = 2 + \sqrt{3} + 2 - \sqrt{3}x+x1=2+3+2−3

x + \frac{1}{x} = 2 + 2x+x1=2+2

\tt\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = > x + \frac{1}{x} = 4 =>x+x1=4

Cubing the both sides as per the question,

{(x + \frac{1}{x}) }^{3} = {4}^{3}(x+x1)3=43

{x}^{3} + \frac{1}{ {x}^{3} } + 3(x + \frac{1}{x}) = 64x3+x31+3(x+x1)=64

{x}^{3} + \frac{1}{ {x}^{3} } + 3 \times 4 = 64x3+x31+3×4=64

{x}^{3} + \frac{1}{ {x}^{3} } + 12 = 64x3+x31+12=64

{x}^{3} + \frac{1}{ {x}^{3} } = 64 - 12x3+x31=64−12

\tt\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = > {x}^{3} + \frac{1}{ {x}^{3} } = 52 =>x3+x31=52

Similar questions