If
Answers
Answered by
16
Question :
If x = 2 + √3, then find the vale of √x + 1/√x
Answer :
Given :
x = 2 + √3
Let's find the value of 1/x first
1/x = 1/( 2 + √3 )
Rationalising the denominator
⇒ 1/x = ( 2 - √3 ) / { ( 2 + √3 )( 2 - √3 ) }
⇒ 1/x = ( 2 - √3 ) / { 2² - ( √3 )² }
⇒ 1/x = ( 2 - √3 ) / ( 4 - 3 )
⇒ 1/x = ( 2 - √3 ) / 1
⇒ 1/x = 2 - √3
Now, find the value of x + 1/x
⇒ x + 1/x = 2 + √3 + 2 - √3
⇒ x + 1/x = 4
Adding 2 on both sides
⇒ x + 1/x + 2 = 4 + 2
It can be written as
⇒ ( √x )² + ( 1/√x )² + 2( √x )( 1/√x ) = 6
Since ( a + b )² = a² + b² + 2ab
⇒ ( √x + 1/√x )² = 6
Taking square root on both sides
⇒ √x + 1/√x = ± √6
∴ the value of √x + 1/√x is ± √6.
Similar questions