Math, asked by kushwahseema52, 11 months ago

If
x = 3 +  \sqrt{2}
find the value of
 x +  \frac{1}{ {x}^{2} }

Answers

Answered by abhi569
57

Looks like you are asking for the value of x^2 + 1 / x^2.

Answer:

( 550 + 288√2 ) / 49

Step-by-step explanation:

Given,

    x = 3 + √2

⇒ x = 3 + √2

⇒ 1 / x = 1 / ( 3 + √2 )

Multiplying and diviiding RHS by ( 3 - √2 ):

⇒ 1 / x = ( 3 - √2 ) / ( 3 + √2 )( 3 - √2 )

⇒ 1 / x  = ( 3 - √2 ) / [ ( 3 )^2 - ( √2 )^2 ]           { Using ( a + b )( a - b ) = a^2 - b^2 }

⇒ 1 / x = ( 3 - √2 ) / [ 9 - 2 ]

⇒ 1 / x = ( 3 - √2 ) / 7

Therefore,

⇒ x^2 + 1 / x^2

⇒ ( 3 + √2 )^2 + [ ( 3 - √2 ) / 7 ]^2

⇒ [ 49( 3 + √2 )^2 + ( 3 - √2 )^2 ] / 49

⇒ [ 49( 9 + 2 + 6√2 ) + ( 9 + 2 - 6√2 ) ] / 49

⇒ [ 49( 9 ) + 9 + 49( 2 ) + 2 + 49 ( 6√2 ) - 6√2 ] / 49

⇒ [ 9( 49 + 1 ) + 2( 49 + 1 ) + 6√2( 49 - 1 ) ] / 49

⇒ [ 9( 50 ) + 2( 50 ) + 6√2( 48 ) ] / 49

⇒ [ 450 + 100 + 288√2 ] / 49

⇒ ( 550 + 288√2 ) / 49

Answered by TrickYwriTer
43

Step-by-step explanation:

  \bold{Given - } \\ x = 3 +  \sqrt{2}  \\  \\  \bold{To \: find - } \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  \\  \\ Now, \\ According \: to \: the \: question \\  \\ x = 3 +  \sqrt{2}  \\ And \\  \frac{1}{x}  =  \frac{1}{3 +  \sqrt{2} }  \\  \\  \bold{Rationalising \: the \: denominator} \\ \\  \frac{1}{(3 +  \sqrt{2} )}  \times  \frac{(3 -  \sqrt{2} )}{(3 -  \sqrt{2}) }  \\  = \frac{3 -  \sqrt{2} }{9 - 2}  \\ = \frac{3 -  \sqrt{2} }{7}  \\   = \fbox\bold{\frac{1}{x}  =  \frac{3 -  \sqrt{2} }{7} } \\  \\  {(3 +  \sqrt{2}) }^{2}  +  (\frac{3 -  \sqrt{2} }{7} ) {}^{2}  \\ = 11 + 6 \sqrt{2}   \: +  \frac{11 - 6 \sqrt{2} }{49}  \\ = \frac{49(11 + 6 \sqrt{2}) + (11 - 6 \sqrt{2} ) }{49}  \\  = \frac{539 + 294 \sqrt{2}  + 11 - 6 \sqrt{2} }{49}  \\  =\frac{550 + 288 \sqrt{2} }{49}  \\  \\ Hence, \\ The \: value \: of \:  \bold{ {x}^{2}  +  \frac{1}{ {x}^{2} } } \: is \:  \bold{ \frac{550 + 288 \sqrt{2} }{49} }

 \bold{Formula  \: Used -  } \\ \\   {(a + b)}^{2}  =  {a}^{2}   +  2ab  +  {b}^{2}  \\  {(a - b)}^{2}  =  {a}^{2}  - 2ab +  {b}^{2}  \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}

Similar questions