Math, asked by absencex, 10 months ago

If
x = a \sinΘ \: and \: y = b \:  \tanΘ \:
,then prove that
 \frac{ {a}^{2} } {{x}^{2}}  -  \frac{{b}^{2} }{ {y}^{2} }  = 1
? ​

Answers

Answered by PanThErBoY
22

Answer:

\huge{ \underline{ \purple{ \bold{ \underline{ \mathrm{Qu{\blue{EstiON}}}}}}}} ⟶

If x=a sin Θ and y=b tan Θ, then prove that

 \frac{ {a}^{2} }{ {x}^{2} }  -  \frac{ {b}^{2} }{ {y}^{2} }  = 1

\huge{ \underline{ \purple{ \bold{ \underline{ \mathrm{SOLU{\blue{TION}}}}}}}}⇒

LHS=

⇒\frac{ {a}^{2} }{ {x}^{2} }  - \frac{ {b}^{2} }{{y}^{2} }

Step-by-step explanation:

⇒LHS \: \frac{ {a}^{2} }{ {a}^{2}  \ { \sin }^{2} Θ }  -  \frac{ {b}^{2} }{ {b}^{2} { \tan }^{2}Θ}

⇒LHS \:  =  \frac{1}{ { \sin}^{2} Θ}  -  \frac{1}{ { \tan }^{2} Θ }

⇒LHS \:  =  \frac{1}{ { \sin }^{2} Θ }  -  \frac{1}{ { \tan }^{2} Θ }

⇒LHS \:  =   { \csc }^{2} Θ -  { \cot}^{2}Θ

⇒LHS \:  = 1 = RHS

\huge\underline{ \underline{ \mathbb{ { \blue{ тн{ \pink{คห{ \purple{кร   \: }}}}} }}}}

Answered by Anonymous
5

\large{\underline{\bf{\green{Given:-}}}}

x = a \sinΘ \: and \: y = b \: \tanΘ \:

\large{\underline{\bf{\green{To\:Find:-}}}}

✰ we need to prove that

 \frac{ {a}^{2} } {{x}^{2}} - \frac{{b}^{2} }{ {y}^{2} } = 1

\huge{\underline{\bf{\red{Solution:-}}}}

LHS:-

: \implies   \sf \frac{ {a}^{2} }{ {x}^{2} } -  \frac{ {b}^{2} }{ {y}^{2} } \\  \\  \sf \: we \: know \: that \: x = a \: sin \theta \: and \: y = b\: tan \theta \\  \\   : \implies   \sf \frac{ {a}^{2} }{ {a}^{2}  {sin}^{2} \theta }  -  \frac{ {b}^{2} }{ {b}^{2} {tan}^{2}  \theta }  \\  \\  : \implies   \sf\frac{{ \cancel{ {a}^{2} }}}{ { \cancel{{a}^{2}  }}{sin}^{2} \theta }  -  \frac{{ \cancel{ {b}^{2}}} }{{ \cancel{ {b}^{2} }}{tan}^{2}  \theta } \\  \\ : \implies   \sf { \green{\frac{1}{ {sin}^{2}  \theta} = cosec {}^{2} \theta }}\:  \\  \\ : \implies   \sf \: and \:  \:  { \green{\frac{1}{ {tan}^{2}  \theta}  =   cot {}^{2} \theta }}\\  \\ : \implies   \sf {cosec}^{2} \theta -  {cot}^{2}   \theta \\  \\  : \implies   \sf{ \purple{ {cosec}^{2}  \theta - cot {}^{2}  \theta = 1}} </p><p>

LHS = RHS

Hence proved.

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions