Math, asked by amanbro9432, 1 month ago

If
x - \frac{1}{x}  = 1 + 3 \sqrt{2} ,find
x ^{3} -  \frac{1}{{x}^{3} }

Answers

Answered by SrijanShrivastava
1

(x -  \frac{1}{x} ) = 1 + 3 \sqrt{2}

 {x}^{3}  -  \frac{1}{ {x}^{3} }  - 3(x -  \frac{1}{x} ) = (1 + 3 \sqrt{2} ) {}^{3}

 {x}^{3}  -  \frac{1}{ {x}^{3} }  - 3(1 + 3 \sqrt{2} ) = (1 + 3 \sqrt{2} ) {}^{3}

 {x}^{3}  -  \frac{1}{ {x}^{3} }  = (1 + 3 \sqrt{2} )(1 + 6 \sqrt{2}  + 18 +3 )

 {x}^{3}  -  \frac{1}{ {x}^{3} }  = (1 + 3 \sqrt{2} )(22 + 6 \sqrt{2} )

 {x}^{3}  -  \frac{1}{ {x}^{3} }  = 58 + 72 \sqrt{2}

Answered by vineetaprakash0802
2

Answer:

x  - \frac{1}{x} = 1 + 3\sqrt{2} \\

Cubing Both The Sides

(x - \frac{1}{x} )^{3} = (1 + 3\sqrt{2})^3\\

x^3 - \frac{1}{x^3} - 3(x - \frac{1}{x} )= (1 + 3\sqrt{2} )^3

x^3 - \frac{1}{x^3} = (1 + 3\sqrt{2})^3 + 3(1 + 3\sqrt{2})

x^3 - \frac{1}{x^3} = (1 + 3\sqrt{2})((1 + 3\sqrt{2})^2 + 3)

This is the simplified form

On simplifying much Value will come as 159.81

Similar questions