Math, asked by parthsarthi67890, 5 months ago

If
x -  \frac{1}{x}   = 6
then, find the value of
 {x}^3  -   \frac{1}{ {x}^{3} }

Answers

Answered by anindyaadhikari13
4

Required Answer:-

Given:

  • x - 1/x = 6

To find:

  • The value of x³ - 1/x³

Solution:

We have,

 \sf \implies x -  \dfrac{1}{x}  = 6

We know that,

 \sf \implies {x}^{3} -  {y}^{3}  = (x - y)( {x}^{2}  + xy +  {y}^{2} )

Therefore,

 \sf \implies  {x}^{3}  -  \dfrac{1}{ {x}^{3} }  = { \bigg(x -  \dfrac{1}{x} \bigg) }^{3}  - 3 \times x \times  \dfrac{1}{x}  \bigg(x -  \dfrac{1}{x}  \bigg)

 \sf \implies  {x}^{3}  -  \dfrac{1}{ {x}^{3} }  = { \bigg(x -  \dfrac{1}{x} \bigg) }^{3}  - 3\bigg(x -  \dfrac{1}{x}  \bigg)

Putting the value of x - 1/x, we get,

 \sf \implies {x}^{3}  -  \dfrac{1}{ {x}^{3} }  =  {6}^{3}  - 3 \times 6

 \sf \implies {x}^{3}  -  \dfrac{1}{ {x}^{3} }  = 216  - 18

 \sf \implies {x}^{3}  -  \dfrac{1}{ {x}^{3} }  = 198

Hence, the value of x³ - 1/x³ is 198.

Answer:

  • The value of x³ - 1/x³ is 198.

More Identities to know:

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a + b)(a - b)
  • (a + b)² = (a - b)² + 4ab
  • (a - b)² = (a + b)² - 4ab
  • (a + b)³ = a³ + 3ab(a + b) + b³
  • (a - b)³ = a³ - 3ab(a - b) - b³
Similar questions